Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Sep Sci ; 41(10): 2119-2129, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29427396

RESUMEN

Hepatitis B virus-like particles expressed in Escherichia coli were purified using anion exchange adsorbents grafted with polymer poly(oligo(ethylene glycol) methacrylate) in flow-through chromatography mode. The virus-like particles were selectively excluded, while the relatively smaller sized host cell proteins were absorbed. The exclusion of virus-like particles was governed by the accessibility of binding sites (the size of adsorbents and the charge of grafted dextran chains) as well as the architecture (branch-chain length) of the grafted polymer. The branch-chain length of grafted polymer was altered by changing the type of monomers used. The larger adsorbent (90 µm) had an approximately twofold increase in the flow-through recovery, as compared to the smaller adsorbent (30 µm). Generally, polymer-grafted adsorbents improved the exclusion of the virus-like particles. Overall, the middle branch-chain length polymer grafted on larger adsorbent showed optimal performance at 92% flow-through recovery with a purification factor of 1.53. A comparative study between the adsorbent with dextran grafts and the polymer-grafted adsorbent showed that a better exclusion of virus-like particles was achieved with the absorbent grafted with inert polymer. The grafted polymer was also shown to reduce strong interaction between binding sites and virus-like particles, which preserved the particles' structure.


Asunto(s)
Virus de la Hepatitis B/aislamiento & purificación , Metacrilatos/química , Polietilenglicoles/química , Polímeros/química , Proteínas/química , Adsorción , Sitios de Unión , Cromatografía por Intercambio Iónico , Dextranos/química , Escherichia coli/virología , Sefarosa/química , Termogravimetría
2.
J Chromatogr A ; 1445: 1-9, 2016 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-27059397

RESUMEN

Purification of virus-like particles (VLPs) in bind-and-elute mode has reached a bottleneck. Negative chromatography has emerged as the alternative solution; however, benchmark of negative chromatography media and their respective optimized conditions are absent. Hence, this study was carried out to compare the performance of different negative chromatography media for the purification of hepatitis B VLPs (HB-VLPs) from clarified Escherichia coli feedstock. The modified anion exchange media, core-shell adsorbents (InertShell and InertLayer 1000) and polymer grafted adsorbents (SQ) were compared. The results of chromatography from packed bed column of core-shell adsorbents showed that there is a trade-off between the purity and recovery of HB-VLPs in the flowthrough fraction due to the shell thickness. Atomic force microscopic analysis revealed funnel-shaped pore channels in the shell layer which may contribute to the entrapment of HB-VLPs. A longer residence time at a lower feed flow rate (0.5ml/min) improved slightly the HB-VLPs purity in all modified adsorbents, but the recovery in InertShell reduced substantially. The preheat-treatment is not recommended for the negative chromatography as the thermal-induced co-aggregation of HCPs and HB-VLPs would flow along with HB-VLPs and thus reduced the HB-VLPs purity in the flowthrough. Further reduction in the feedstock concentration enhanced the purity of HB-VLPs especially in InertLayer 1000 but reduced substantially the recovery of HB-VLPs. In general, the polymer grafted adsorbent, SQ, performed better than the core-shell adsorbents in handling a higher feedstock concentration.


Asunto(s)
Cromatografía por Intercambio Iónico , Virus de la Hepatitis B/química , Virus de la Hepatitis B/aislamiento & purificación , Virión/aislamiento & purificación , Virología/métodos , Adsorción , Aniones/química , Antígenos de Superficie de la Hepatitis B/metabolismo , Soluciones/química
3.
J Chromatogr A ; 1415: 161-5, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26358561

RESUMEN

Poly(oligo(ethylene glycol) methacrylate) (POEGMA), an inert polymer was grafted onto an anion exchange adsorbent for the exclusion of relatively larger hepatitis B virus-like particles (HB-VLPs) from the anion exchange ligand (Q) and at the same time this process allowed the selective adsorption of smaller size Escherichia coli host cell proteins (HCPs). The chain lengths of the POEGMA grafted were modulated by varying the amount of monomers used in the polymer grafting. The purification factor and yield of the HB-VLPs obtained from the flow-through of negative chromatography were 2.3 and 66.0±3.1%, respectively, when shorter chain length of POEGMA (SQ) was grafted. Adsorbent grafted with longer chain of POEGMA (LQ) excluded some HCPs that are larger in size together with the HB-VLPs, reducing the purity of the recovered HB-VLPs. Further heat-treatment of the flow-through pool from SQ followed by centrifugation increased the purity of heat stable HB-VLPs to 87.5±1.1%. Heat-treatment of the flow through sample resulted in thermal denaturation and aggregation of HCPs, while the heat stable HB-VLPs still remained intact as observed under a transmission electron microscope. The performance of the negative chromatography together with heat treatment in the purification of HB-VLPs is far better than the reported bind-and-elute techniques.


Asunto(s)
Antígenos del Núcleo de la Hepatitis B/aislamiento & purificación , Virus de la Hepatitis B/metabolismo , Metacrilatos/química , Polietilenglicoles/química , Adsorción , Cromatografía por Intercambio Iónico/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Antígenos del Núcleo de la Hepatitis B/genética , Antígenos del Núcleo de la Hepatitis B/metabolismo , Ligandos , Ácidos Polimetacrílicos
4.
J Chromatogr A ; 1394: 71-80, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25836051

RESUMEN

A thermo-responsive random copolymer, POEGMA (poly(oligoethylene glycol) methacrylate) grafted on cationized agarose adsorbent was used for size selective protein adsorption. The effects of OEGMA300 ((oligoethylene glycol) methyl ether methacrylate, Mn=300g/mol) content and temperature on the adsorption of bovine serum albumin (BSA) were evaluated. Increasing the content of OEGMA300 resulted a reduction in BSA adsorption due to the enhanced shielding effect of OEGMA300 chains. Grafting of POEGMA chains onto cationized agarose adsorbent reduced the BSA adsorption by more than 95% at 26.5°C, which is below the LCST (lower critical solution temperature) of POEGMA. The BSA adsorption capacities for adsorbents grafted with 10 and 20mol% of OEGMA300 decreased by 48% and 46% respectively at 38°C, a temperature higher than their LCSTs. The temperature-dependent adsorption of BSA on the adsorbents was attributed to changes in the polymer conformation. The thermal transition of grafted POEGMA conformation exposed the ligand when the temperature was increased. Myoglobin (Myo), which was smaller than BSA, its adsorption behavior was less dependent on the polymer conformation. The adsorption of myoglobin onto the adsorbent with and without POEGMA showed similar percentage of reduction whereas the adsorption of BSA onto the adsorbent with POEGMA decreased by 7.6 times compared to the one without POEGMA. The packed bed of POEGMA grafted adsorbent was used for flow through separation of a protein mixture consisted of virus-like particle, Hepatitis B virus-like particle (HBVLP), BSA and insulin aspart. The recovery of HBVLP in 20mol% of OEGMA300 grafted adsorbent was increased by 19% compared to ungrafted adsorbent. The flow through of BSA can be reduced by increasing the operating temperature above LCST of 20mol% of OEGMA300 while the smaller protein, insulin aspart, remained adsorbed onto the cationized surface. Hence, this thermo-responsive adsorbent has a potential for size-selective separation of protein especially for the recovery of large biomolecule.


Asunto(s)
Metacrilatos/química , Polietilenglicoles/química , Proteínas/química , Adsorción , Virus de la Hepatitis B/química , Insulina Aspart/química , Mioglobina/química , Albúmina Sérica Bovina/química , Soluciones , Temperatura , Virión/química
5.
Biomacromolecules ; 15(8): 3052-60, 2014 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-24983405

RESUMEN

A weak polyelectrolyte, poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA), was grafted onto the surface of cellulose nanocrystals via free radical polymerization. The resultant suspension of PDMAEMA-grafted-cellulose nanocrystals (PDMAEMA-g-CNC) possessed pH-responsive properties. The grafting was confirmed by FTIR, potentiometric titration, elementary analysis, and thermogravimetric analysis (TGA); the surface and interfacial properties of the modified particles were characterized by surface tensiometer. Compared to pristine cellulose nanocrystals, modified CNC significantly reduced the surface and interfacial tensions. Stable heptane-in-water and toluene-in-water emulsions were prepared with PDMAEMA-g-CNC. Various factors, such as polarity of solvents, concentration of particles, electrolytes, and pH, on the properties of the emulsions were investigated. Using Nile Red as a florescence probe, the stability of the emulsions as a function of pH and temperature was elucidated. It was deduced that PDMAEMA chains promoted the stability of emulsion droplets and their chain conformation varied with pH and temperature to trigger the emulsification and demulsification of oil droplets. Interestingly, for heptane system, the macroscopic colors varied depending on the pH condition, while the color of the toluene system remained the same. Reversible emulsion systems that responded to pH were observed and a thermoresponsive Pickering emulsion system was demonstrated.


Asunto(s)
Celulosa/química , Metacrilatos/química , Nanopartículas/química , Nylons/química , Polímeros/química , Electrólitos/química , Emulsiones , Concentración de Iones de Hidrógeno , Polimerizacion , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...