Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Toxicol ; 38(3): 628-634, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36413001

RESUMEN

Bisphenol A-glycidyl methacrylate (BisGMA) is a methacrylate monomer that is mainly used in three-dimensional structures to reconstruct dental and bony defects. BisGMA has toxic and proinflammatory effects on macrophages. Rutin is a natural flavonol glycoside that is present in various plants and has useful biological effects, such as anti-inflammatory, anticancer, and antioxidative effects. The aim of this study was to investigate the anti-inflammation of rutin in macrophages after exposure to BisGMA. Pretreatment of the RAW264.7 macrophage with rutin at 0, 10, 30, and 100 µM for 30 min before being incubated with BisGMA at 0 or 3 µM. Proinflammatory cytokines and prostaglandin (PG) E2 were detected by enzyme-linked immunosorbent assay (ELISA). Nitric oxide (NO) was detected by the Griess assay. Expression and phosphorylation of proteins were measured by Western blot assay. Pretreatment with rutin inhibited the BisGMA-induced generation of proinflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, and PGE2, in macrophages. Rutin also suppressed the BisGMA-induced secretion of NO and expression of inducible nitric oxide synthase (iNOS) in a concentration-dependent manner. Furthermore, rutin suppressed the mitogen-activated protein kinase (MAPK) phosphorylation in a concentration-dependent manner. Finally, rutin suppressed the BisGMA-induced phosphorylation of nuclear factor (NF)-κB p65 and degradation of inhibitor of κB (IκB). These results indicate that the concentration of rutin has an inhibitory effect on proinflammatory mediator generation, MAPK phosphorylation, NF-κB p65 phosphorylation, and IκB degradation. In conclusion, rutin is a potential anti-inflammatory agent for BisGMA-stimulated macrophages through NF-κB p65 phosphorylation and IκB degradation resulting from MAPK phosphorylation.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos , FN-kappa B , FN-kappa B/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Bisfenol A Glicidil Metacrilato/metabolismo , Bisfenol A Glicidil Metacrilato/farmacología , Rutina/farmacología , Macrófagos , Citocinas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Lipopolisacáridos/farmacología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-35409910

RESUMEN

Patients with NTG or POAG with more than one outpatient or discharge diagnosis from the ophthalmology department were included in the study. These data were merged with the PM2.5 data from the Air Quality Monitoring Network for analysis. This was a case−control study, with 1006 participants in the NTG group and 2533 in the POAG group. To investigate fine particulate matter (PM2.5) exposure levels in patients with normal-tension glaucoma (NTG) and primary open-angle glaucoma (POAG), patient data were obtained from Taiwan's Longitudinal Health Insurance Database 2000 for the 2008 to 2013 period. We used a multivariate logic regression model to assess the risk for each participant. The PM2.5 exposure levels were divided into four groups: <25th percentile (Q1), <617 µg/mm3; 25th to 50th percentile (Q2), 617 to 1297 µg/mm3; 50th to 75th percentile (Q3), 1297 to 2113 µg/mm3; and >75th percentile (Q4), >2113 µg/mm3. The results are expressed in terms of odds ratio (OR) and 95% CI. A multiple logistic regression was used to compare the results of the NTG group with those of the POAG group. Compared with the PM2.5 Q1 level, the OR of the PM2.5 Q2 level was 1.009 (95% CI 0.812−1.254), the PM2.5 Q3 level was 1.241 (95% CI 1.241−1.537, p < 0.05), and the PM2.5 Q4 level was 1.246 (95% CI 1.008−1.539, p < 0.05). Our research reveals that compared with POAG, the risk of developing NTG is more closely related with PM2.5 exposure, and PM2.5 has a concentration−dose effect. It is hoped that in the future, in the clinical judgment of NTG and POAG, the level of PM2.5 in the environment can be taken as a risk factor.


Asunto(s)
Glaucoma de Ángulo Abierto , Glaucoma de Baja Tensión , Estudios de Casos y Controles , Glaucoma de Ángulo Abierto/diagnóstico , Glaucoma de Ángulo Abierto/epidemiología , Humanos , Glaucoma de Baja Tensión/diagnóstico , Material Particulado , Taiwán/epidemiología
3.
Oxid Med Cell Longev ; 2021: 9314342, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34336119

RESUMEN

1-Nitropyrene (1-NP), one of the most abundant nitropolycyclic aromatic hydrocarbons (nitro-PAHs), is generated from the incomplete combustion of carbonaceous organic compounds. 1-NP is a specific marker of diesel exhaust and is an environmental pollutant and a probable carcinogen. Macrophages participate in immune defense against the invasive pathogens in heart, lung, and kidney infection diseases. However, no evidence has indicated that 1-NP induces apoptosis in macrophages. In the present study, 1-NP was found to induce concentration-dependent changes in various cellular functions of RAW264.7 macrophages including cell viability reduction; apoptosis generation; mitochondrial dysfunction; apoptosis-inducing factor (AIF) nuclear translocation; intracellular ROS generation; activation of the AMPK/Nrf-2/HO-1 pathway; changes in the expression of BCL-2 family proteins; and depletion of antioxidative enzymes (AOE), such as glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD) These results indicate that 1-NP induced apoptosis in macrophages through AIF nuclear translocation and ROS generation due to mitochondrial dysfunction and to the depletion of AOE from the activation of the AMPK/Nrf-2/HO-1 pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Factor Inductor de la Apoptosis/metabolismo , Apoptosis/fisiología , Macrófagos/metabolismo , Pirenos/efectos adversos , Especies Reactivas de Oxígeno/metabolismo , Humanos
4.
Antioxidants (Basel) ; 10(2)2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33572510

RESUMEN

Acute lung injury (ALI) is an acute and life-threatening inflammatory disease of the lung parenchyma that is associated with high mortality worldwide. No therapeutic strategies have been developed for the mitigation of the proinflammatory response that characterizes ALI. Kirenol has anti-inflammatory, antiarthritic, and immunoregulatory effects. In the present study, we investigated the protective effects of kirenol against lipopolysaccharides (LPS)-induced ALI in mice. Kirenol reduced the LPS-induced histopathology changes involving edema and thickening of the interstitial or alveolar walls, infiltration of leukocytes, formation of hyaline membrane. Pretreatment with kirenol reduced leukocytes infiltration in bronchoalveolar lavage fluid (BALF), the alveolar-capillary barrier disruption and lipid peroxidation in lung tissues induced by LPS. Kirenol significantly inhibited the secretion of cytokines, IL-1ß, IL6, and TNFα, into the BALF of the mice with LPS-induced ALI through NFκB activation. Moreover, kirenol attenuated the downregulation of the antioxidant enzymes, superoxide dismutase, glutathione peroxidase, and catalase that was induced by LPS. HO-1 expression and the phosphorylation of Nrf2 and AMPK2 were also induced by kirenol. The results indicate that kirenol can be developed as a treatment strategy for ALI, and its effects are induced through the inhibition of the NF-κB proinflammatory pathway and promotion of AMPK2/Nrf2-mediated HO-1 and antioxidant enzymes (AOE) activation.

5.
Environ Toxicol ; 36(1): 45-54, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32830914

RESUMEN

Bisphenol-A-glycidyldimethacrylate (BisGMA) is a resin monomer frequently used in dentin restorative treatments. The leakage of BisGMA monomer from BisGMA-based polymeric resins can lead to cytotoxicity in macrophages. Rutin has various beneficial bioeffects, including antioxidation and antiinflammation. In this study, we found that pretreatment of RAW264.7 macrophages with rutin-inhibited cytotoxicity induced by BisGMA in a concentration-dependent manner. BisGMA-induced apoptosis, which was detected by levels of phosphatidylserine from the internal to the external membrane and formation of sub-G1, and genotoxicity, which was detected by cytokinesis-blocked micronucleus and single-cell gel electrophoresis assays, were inhibited by rutin in a concentration-dependent manner. Rutin suppressed the BisGMA-induced activation of caspase-3 and -9 rather than caspase-8. Rutin inhibited the activation of the mitochondrial apoptotic pathway, including cytochrome C release and mitochondria disruption, after macrophages were treated with BisGMA. Finally, BisGMA-induced reactive oxygen species (ROS) generation and antioxidant enzyme (AOE) deactivation could be reversed by rutin. Parallel trends were observed in the elevation of AOE activation and inhibition of ROS generation, caspase-3 activity, mitochondrial apoptotic pathway activation, and genotoxicity. These results suggested that rutin suppressed BisGMA-induced cytotoxicity through genotoxicity, the mitochondrial apoptotic pathway, and relatively upstream factors, including reduction of ROS generation and induction of AOE.

6.
Tzu Chi Med J ; 32(4): 344-350, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33163379

RESUMEN

OBJECTIVE: Safrole, also called shikimol and Sassafras, is the carcinogenic and phenylpropanoid compound extracted from Sassafras tree and anise, betel, and camphor. Moreover, a high concentration of safrole can be occur in the saliva because of betel nut or areca quid chewing which a common habit observed in Southern and Southeastern Asia. Notably, macrophages are crucial phagocytic cells of the immune system. Nonetheless, to date, no evidence has been reported regarding safrole-induced proinflammatory response and the corresponding mechanism in macrophages. MATERIALS AND METHODS: In the present study, the cytokines expression, NO generation, protein phosphorylation, and expression were assessed by enzyme-linked immunosorbent assay, Griess reagent, and Western blot assay, respectively. RESULTS: In this study, we determined that safrole induces the generation of nitric oxide and proinflammatory cytokines, including tumor necrosis factor-α, interleukin-1ß, and IL-6 in RAW264.7 macrophages in a concentration-dependent manner. Furthermore, inhibitor of κB (IκB) degradation was caused by safrole in a concentration-dependent manner. In addition, the phosphorylation of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) family, including p38 MAPK, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase, was induced by safrole began to increase at 10 µM and attained a plateau at 100 µM. CONCLUSION: These results indicated that safrole induces the expression of proinflammatory responses in macrophages through the NF-κB/IκB pathway and its upstream factor, MAPK family phosphorylation.

7.
Polymers (Basel) ; 12(6)2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32580382

RESUMEN

Urethane dimethacrylate (UDMA) is a dimethacrylate-based resin monomer that can react with other related monomers and inorganic particles, causing hydrophobic polymerization through cross-linking upon light activation. UDMA polymers are commonly used for the reconstruction and reinforcement of teeth and bones. UDMA can become unbound and be released from light-cured polymer resins. Thus far, no evidence exists on the toxic effects of UDMA and its related working mechanisms for macrophages. Therefore, in the present study, we investigated the cytotoxicity, mode of cell death, DNA damage, caspase activities, mitochondrial dysfunction, and reactive oxygen species (ROS) generation in RAW264.7 macrophages treated with UDMA using the lactate dehydrogenase (LDH) assay kit, Annexin V-FITC and PI assays, micronucleus formation and comet assay, caspase fluorometric assay, JC-1 assay, and 2',7'-dichlorofluorescin diacetate (DCFH-DA) assay, respectively. Our results show that UDMA induced cytotoxicity; apoptosis and necrosis; genotoxicity, which is also called DNA damage; increased caspase-3, -8, and -9 activities; mitochondrial dysfunction; and intracellular ROS generation in a concentration-dependent manner in RAW264.7 macrophages. Thus, based on the observed inhibited concentration parallel trends, we concluded that UDMA induces toxic effects in macrophages. Furthermore, UDMA-induced intracellular ROS generation, cytotoxicity, and DNA damage were reduced by N-acetyl-L-cysteine.

8.
Ecotoxicol Environ Saf ; 193: 110348, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32114240

RESUMEN

Due to rapid advances in the era of electronic technologies, indium has played the important material for the production of liquid crystal display screens in the semiconductor and optoelectronic industries. The present study focuses on evaluating the toxic effects and related mechanisms of indium chloride (InCl3) on RAW264.7 macrophages. Cytotoxicity was induced by InCl3 in a concentration- and time-dependent manner. InCl3 had the ability to induce macrophage death through apoptosis rather than through necrosis. According to the cytokinesis-block micronucleus assay and alkaline single-cell gel electrophoresis assay, InCl3 induced DNA damage, also called genotoxicity, in a concentration-dependent manner. Cysteine-dependent aspartate-directed protease (caspase)-3, -8, and -9 were activated by InCl3 in a concentration-dependent manner. Mitochondria dysfunction and cytochrome c release from the mitochondria were induced by InCl3 in a concentration-dependent manner. Downregulation of BCL2 and upregulation of BAD were induced by InCl3 in a concentration-dependent manner. More, we proposed that InCl3 treatment generated reactive oxygen species (ROS) in a concentration-dependent manner. In conclusion, the current study revealed that InCl3 induced macrophage cytotoxicity, apoptosis, and genotoxicity via a mitochondria-dependent apoptotic pathway and ROS generation.


Asunto(s)
Daño del ADN , Indio/toxicidad , Macrófagos/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Supervivencia Celular/efectos de los fármacos , Citocromos c/metabolismo , Citotoxinas/toxicidad , Macrófagos/metabolismo , Ratones , Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Proteína Letal Asociada a bcl/metabolismo
9.
Semin Cutan Med Surg ; 37(4): 238-241, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30475932

RESUMEN

Dermatologists were the pioneers in the development of laser technology and have the most experience using these lasers to treat the external genitalia for many cutaneous disorders. Dermatologists who have experience and expertise using lasers and devices, are already using them to treat the external genitalia, and are comfortable performing female gynecologic exams may want to explore the wide range of options that are available to treat the functional and aesthetic needs of the female population. Dermatologists should work with obstetricians and gynecologists to ensure that patients are proper candidates for the procedures.


Asunto(s)
Procedimientos Quirúrgicos Ginecológicos/métodos , Procedimientos de Cirugía Plástica/métodos , Vagina/cirugía , Femenino , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA