Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biofabrication ; 16(4)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39116895

RESUMEN

Vital pulp therapy (VPT) has gained prominence with the increasing trends towards conservative dental treatment with specific indications for preserving tooth vitality by selectively removing the inflamed tissue instead of the entire dental pulp. Although VPT has shown high success rates in long-term follow-up, adverse effects have been reported due to the calcification of tooth canals by mineral trioxide aggregates (MTAs), which are commonly used in VPT. Canal calcification poses challenges for accessing instruments during retreatment procedures. To address this issue, this study evaluated the mechanical properties of dural substitute intended to alleviate intra-pulp pressure caused by inflammation, along with assessing the biological responses of human dental pulp stem cells (hDPSCs) and human umbilical vein endothelial cells (HUVECs), both of which play crucial roles in dental pulp. The study examined the application of dural substitutes as pulp capping materials, replacing MTA. This assessment was conducted using a microfluidic flow device model that replicated the blood flow environment within the dental pulp. Computational fluid dynamics simulations were employed to ensure that the fluid flow velocity within the microfluidic flow device matched the actual blood flow velocity within the dental pulp. Furthermore, the dural substitutes (Biodesign; BD and Neuro-Patch; NP) exhibited resistance to penetration by 2-hydroxypropyl methacrylate (HEMA) released from the upper restorative materials and bonding agents. Finally, while MTA increased the expression of angiogenesis-related and hard tissue-related genes in HUVEC and hDPSCS, respectively, BD and NP did not alter gene expression and preserved the original characteristics of both cell types. Hence, dural substitutes have emerged as promising alternatives for VPT owing to their resistance to HEMA penetration and the maintenance of stemness. Moreover, the microfluidic flow device model closely replicated the cellular responses observed in live pulp chambers, thereby indicating its potential use as anin vivotesting platform.


Asunto(s)
Pulpa Dental , Células Endoteliales de la Vena Umbilical Humana , Humanos , Pulpa Dental/citología , Recubrimiento de la Pulpa Dental , Dispositivos Laboratorio en un Chip , Células Madre/citología , Células Madre/metabolismo , Materiales de Recubrimiento Pulpar y Pulpectomía/química , Materiales de Recubrimiento Pulpar y Pulpectomía/farmacología , Duramadre
2.
Environ Sci Technol ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135318

RESUMEN

Vacuum-UV (185 nm, VUV) is widely applied to polish reverse osmosis permeate (ROP), such as the production of electronics-grade ultrapure water. In this study, the VUV oxidation of acetaldehyde, a common carbonyl in ROP, was found to be influenced by anions even at low concentrations. Interestingly, the influencing extent and mechanism varied depending on the anions. Bicarbonate minimally affected the VUV-photon absorption and •OH consumption, but at 5000 µg-C·L-1, it decreased the degradation of acetaldehyde by 58.7% possibly by scavenging organic radicals or other radical chain reactions. Nitrate strongly competed for VUV-photon absorption and •OH scavenging through the formation of nitrite, and at 500 µg-N·L-1, it decreased the removal rate of acetaldehyde degradation by 71.2% and the mineralization rate of dissolved organic carbon by 53.4%. Chloride competed for VUV-photon absorption and also generated reactive chlorine species, which did not affect acetaldehyde degradation but influenced the formation of organic byproducts. The radical chain reactions or activation of anions under VUV irradiation could compensate for the decrease in oxidation performance and need further investigation. In real ROPs, the VUV oxidation of acetaldehyde remained efficient, but mineralization was hindered due to nitrate and chloride anions. This study deepens the understanding of the photochemistry and feasibility of VUV in water with low concentrations of anions.

3.
J Dent Sci ; 19(3): 1783-1791, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39035315

RESUMEN

Background/purpose: The retrograde filling material, particularly mineral trioxide aggregate (MTA) employed in apicoectomy, should possess high antibacterial efficacy and osteogenic potential. We evaluated the antibacterial efficacy, biocompatibility, and osteogenic potential following the addition of silver nanoparticles (AgNPs) and calcium fluoride (CaF2) in retrograde filling material of MTA. Materials and methods: MTA was mixed with four different solvents. Group 1 (G1): distilled water, Group 2 (G2): 50 ppm AgNPs, Group 3 (G3): 1 wt% CaF2, and Group 4 (G4): 50 ppm AgNPs and 1 wt% CaF2. The pH variation of each group was monitored, while the surface roughness was measured. The antibacterial efficacy against Enterococcus faecalis (E. faecalis) and the viability of murine pre-osteoblast (MC3T3) were evaluated for each group using colorimetric assays. The gene expression levels of osteogenic potential marker (OCN, ALPL, and RUNX2) in MC3T3 cells for each group were quantified using real-time-qPCR. Statistical analysis was performed at α = 0.05 level of significance. Results: When comparing the levels of antibacterial efficacy, the order of effectiveness was G4>G2>G3>G1 (P < 0.05). In the cell viability test, owing to MTA-eluted growth medium having a positive effect on MC3T3 cell proliferation, G1-4 exhibited a statistically increased cell viability compared to the control (P < 0.05). However, G2-4 did not result in a statistically significant difference when compared to G1 (P < 0.05). Moreover, G4 exhibited the highest gene expression among the four groups (P < 0.05). Conclusion: The addition of AgNPs and CaF2 to MTA could be a promising option for use as a new retrograde filling material.

4.
J Dent Sci ; 19(3): 1653-1666, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39035317

RESUMEN

Background/purpose: In the field of conservative dentistry and endodontics, mineral trioxide aggregate (MTA), commonly used, possesses advantages such as biocompatibility, antimicrobial properties and osteogenic potential. This study investigated the feasibility of utilizing membrane form mineral trioxide aggregate (MTA) as a barrier membrane in guided bone regeneration (GBR) procedures. Materials and methods: Membranes were electrospun from three different formulations: 15 w/v% Polycaprolactone (PCL), 13 w/v% PCL + 2 w/v% MTA (2MTA), and 11 w/v% PCL + 4 w/v% MTA (4MTA). Physicochemical and mechanical properties of the electrospun membrane were compared, encompassing parameters such as surface morphology, fiber diameter distribution, chemical composition, phase identification, tensile stress, pH variation, and water contact angle. Moreover, the antimicrobial properties against of the electrospun membranes were assessed through direct exposure to streptococcus aureus (S. aureus) and candida albicans (C. albicans). Additionally, on the 7th day, biocompatibility and cell attachment were investigated with respect to L929 (fibroblast) and MC3T3 (pre-osteoblast) cells. Inhibition of L929 cell infiltration and the expression of osteogenic related genes including osteocalcin (OCN), alkaline phosphatase (ALP), and runt related transcription factor 2 (RUNX2) in MC3T3 cells on 7th and 14th days were also investigated. Results: PCL, 2MTA, and 4MTA exhibited no statistically differences in fiber diameter distribution and tensile stress. However, as the MTA content increased, wettability and pH also increased. Due to the elevated pH, 4MTA demonstrated the lowest viability S.aureus and C.albicans. All membranes were highly biocompatibility and promoted cell attachment, while effectively preventing L929 cell infiltration. Lastly 4MTA showed increase in OCN, ALP, and RUNX2 expression on both 7th and 14th day. Conclusion: The membrane form MTA possessed characteristics essential for a novel barrier membrane.

5.
Environ Sci Technol ; 58(26): 11649-11660, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38872439

RESUMEN

Brominated byproducts and toxicity generation are critical issues for ozone application to wastewater containing bromide. This study demonstrated that ultraviolet/ozone (UV/O3, 100 mJ/cm2, 1 mg-O3/mg-DOC) reduced the cytotoxicity of wastewater from 14.2 mg of pentol/L produced by ozonation to 4.3 mg of pentol/L (1 mg/L bromide, pH 7.0). The genotoxicity was also reduced from 1.65 to 0.17 µg-4-NQO/L by UV/O3. Compared with that of O3 alone, adsorbable organic bromine was reduced from 25.8 to 5.3 µg/L by UV/O3, but bromate increased from 32.9 to 71.4 µg/L. The UV/O3 process enhanced the removal of pre-existing precursors (highly unsaturated and phenolic compounds and poly aromatic hydrocarbons), while new precursors were generated, yet the combined effect of UV/O3 on precursors did not result in a significant change in toxicity. Instead, UV radiation inhibited HOBr concentration through both rapid O3 decomposition to reduce HOBr production and decomposition of the formed HOBr, thus suppressing the AOBr formation. However, the hydroxyl radical-dominated pathway in UV/O3 led to a significant increase of bromate. Considering both organic bromine and bromate, the UV/O3 process effectively controlled both cytotoxicity and genotoxicity of wastewater to mammalian cells, even though an emphasis should be also placed on managing elevated bromate. Futhermore, other end points are needed to evaluate the toxicity outcomes of the UV/O3 process.


Asunto(s)
Bromo , Aguas Residuales , Bromo/química , Bromo/toxicidad , Bromatos/química , Procesos Fotoquímicos , Rayos Ultravioleta , Ozono/química , Purificación del Agua/métodos , Aguas Residuales/toxicidad , Mamíferos , Animales , Células CHO , Cricetulus
6.
Biomed Eng Lett ; 14(3): 605-616, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38645591

RESUMEN

Wound healing involves a complex and dynamic interplay among various cell types, cytokines, and growth factors. Macrophages and transforming growth factor-ß1 (TGF-ß1) play an essential role in different phases of wound healing. Cold atmospheric plasma has a wide range of applications in the treatment of chronic wounds. Hence, we aimed to investigate the safety and efficacy of a custom-made plasma device in a full-thickness skin defect mouse model. Here, we investigated the wound tissue on days 6 and 12 using histology, qPCR, and western blotting. During the inflammation phase of wound repair, macrophages play an important role in the onset and resolution of inflammation, showing decreased F4/80 on day 6 of plasma treatment and increased TGF-ß1 levels. The plasma-treated group showed better epidermal epithelialization, dermal fibrosis, collagen maturation, and reduced inflammation than the control group. Our findings revealed that floating electrode-dielectric barrier discharge (FE-DBD)-based atmospheric-pressure plasma promoted significantly faster wound healing in the plasma-treated group than that in the control group with untreated wounds. Hence, plasma treatment accelerated wound healing processes without noticeable side effects and suppressed pro-inflammatory genes, suggesting that FE-DBD-based plasma could be a potential therapeutic option for treating various wounds.

7.
Water Res ; 255: 121533, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38569359

RESUMEN

Low-pressure mercury lamps emitting at 254 nm (UV254) are used widely for disinfection. However, subsequent exposure to visible light results in photoreactivation of treated bacteria. This study employed a krypton chloride excimer lamp emitting at 222 nm (UV222) to inactivate E. coli. UV222 and UV254 treatment had similar E. coli-inactivation kinetics. Upon subsequent irradiation with visible light, E. coli inactivated by UV254 was reactivated from 2.71-log to 4.75-log, whereas E. coli inactivated by UV222 showed negligible photoreactivation. UV222 treatment irreversibly broke DNA strands in the bacterium, whereas UV254 treatment primarily formed nucleobase dimers. Additionally, UV222 treatment caused cell membrane damage, resulting in wizened, pitted cells and permeability changes. The damage to the cell membrane was mainly due to the photolysis of proteins and lipids by UV222. Furthermore, the photolysis of proteins by UV222 destroyed enzymes, which blocked photoreactivation and dark repair. The multiple damages can be further evidenced by 4.0-61.1 times higher quantum yield in the photolysis of nucleobases and amino acids for UV222 than UV254. This study demonstrates that UV222 treatment damages multiple sites in bacteria, leading to their inactivation. Employing UV222 treatment as an alternative to UV254 could be viable for inhibiting microorganism photoreactivation in water and wastewater.

8.
Environ Sci Technol ; 58(16): 7113-7123, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38547102

RESUMEN

Low-pressure mercury lamps with high-purity quartz can emit both vacuum-UV (VUV, 185 nm) and UV (254 nm) and are commercially available and promising for eliminating recalcitrant organic pollutants. The feasibility of VUV/UV as a chemical-free oxidation process was verified and quantitatively assessed by the concept of H2O2 equivalence (EQH2O2), at which UV/H2O2 showed the same performance as VUV/UV for the degradation of trace organic contaminants (TOrCs). Although VUV showed superior H2O activation and oxidation performance, its performance highly varied as a function of light path length (Lp) in water, while that of UV/H2O2 proportionally decreased with decreasing H2O2 dose regardless of Lp. On increasing Lp from 1.0 to 3.0 cm, the EQH2O2 of VUV/UV decreased from 0.81 to 0.22 mM H2O2. Chloride and nitrate hardly influenced UV/H2O2, but they dramatically inhibited VUV/UV. The competitive absorbance of VUV by chloride and nitrate was verified as the main reason. The inhibitory effect was partially compensated by •OH formation from the propagation reactions of chloride or nitrate VUV photolysis, which was verified by kinetic modeling in Kintecus. In water with an Lp of 2.0 cm, the EQH2O2 of VUV/UV decreased from 0.43 to 0.17 mM (60.8% decrease) on increasing the chloride concentration from 0 to 15 mM and to 0.20 mM (53.5% decrease) at 4 mM nitrate. The results of this study provide a comprehensive understanding of VUV/UV oxidation in comparison to UV/H2O2, which underscores the suitability and efficiency of chemical-free oxidation with VUV/UV.


Asunto(s)
Peróxido de Hidrógeno , Compuestos Orgánicos , Oxidación-Reducción , Rayos Ultravioleta , Peróxido de Hidrógeno/química , Compuestos Orgánicos/química , Fotólisis , Contaminantes Químicos del Agua/química , Nitratos/química
9.
Environ Sci Process Impacts ; 26(5): 824-831, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38323647

RESUMEN

The control of viruses in water is critical to preventing the spread of infectious viral diseases. Many oxidants can inactivate viruses, and this study aims to systematically compare the disinfection effects of ozone (O3), peroxymonosulfate (PMS), and hydrogen peroxide (H2O2) on MS2 coliphage. The effects of oxidant dose and contact time on disinfection were explored, as were the disinfection effects of three oxidizing agents in secondary effluent. The 4-log inactivation of MS2 coliphage required 0.05 mM O3, 0.5 mM PMS, or 25 mM H2O2 with a contact time of 30 min. All three oxidants achieved at least 4-log disinfection within 30 min, and O3 required only 0.5 min. In secondary effluent, all three oxidants also achieved 4-log inactivation of MS2 coliphage. Excitation-emission matrix (EEM) results indicate that all three oxidants removed dissolved organic matter synchronously and O3 oxidized dissolved organic matter more thoroughly while maintaining disinfection efficacy. Considering the criteria of oxidant dose, contact time, and disinfection efficacy in secondary effluent, O3 is the best choice for MS2 coliphage disinfection among the three oxidants.


Asunto(s)
Desinfección , Peróxido de Hidrógeno , Levivirus , Ozono , Peróxidos , Purificación del Agua , Ozono/química , Ozono/farmacología , Desinfección/métodos , Levivirus/efectos de los fármacos , Peróxidos/química , Purificación del Agua/métodos , Microbiología del Agua , Desinfectantes/farmacología , Oxidantes/farmacología , Oxidantes/química
10.
Environ Res ; 248: 118300, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38281562

RESUMEN

Co-processing recycled waste during cement production, i.e., using alternative materials such as secondary raw materials or secondary raw fuels, is widely practiced in developed countries. Alternative raw materials or fuels contain high concentrations of heavy metals and other hazardous chemicals, which might lead to the potential for dangerous heavy metals and hazardous chemicals to be transferred to clinker or cement products, resulting in exposure and emissions to people or the environment. Managing input materials and predicting which inputs affect the final concentration is essential to prevent potential hazards. We used the data of six heavy metals by input raw materials and input fuels of cement manufacturers in 2016-2017. The concentrations of Pb and Cu in cement were about 10-200 times and 4 to 200 times higher than other heavy metals (Cr, As, Cd, Hg), respectively. We profiled the influence of heavy metal concentration of each input material using the principal component analysis (PCA), which analyzed the leading causes of each heavy metal. The Random Forest (RF) ensemble model predicted cement heavy metal concentrations according to input materials. In the case of Cu, Cd, and Cr, the training performance showed R square values of 0.71, 0.71, and 0.92, respectively, as a result of predicting the cement heavy metal concentration according to the heavy metal concentration of each cement input material using the RF model, which is a machine learning model. The results of this study show that the RF model can be used to predict the amount and concentration of alternative raw materials and alternative fuels by controlling the concentration of heavy metals in cement through the concentration of heavy metals in the input materials.


Asunto(s)
Cadmio , Metales Pesados , Humanos , Cadmio/análisis , Bosques Aleatorios , Metales Pesados/análisis , Sustancias Peligrosas/análisis , Aprendizaje Automático , Monitoreo del Ambiente/métodos
11.
J Hazard Mater ; 464: 133011, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-37988868

RESUMEN

Microwave discharge electrodeless lamp (MDEL) is a novel ultraviolet (UV) light source. Synergistic disinfection using UV light emitted by MDEL (MWUV) coupled with ozone (O3) at an ultra-low dose was investigated. Escherichia coli and Bacillus subtilis were deactivated more effectively by MWUV/O3 than by either MWUV or O3 alone. MWUV/O3 treatment using an O3 concentration of 0.4 mg/L gave an E. coli inactivation rate of 5.52 log. The photoreactivation degree and rate of E. coli were lower after inactivation by MWUV/O3 treatment than after MWUV treatment alone. The maximum photoreactivation rates after the MWUV/O3 and MWUV treatments were 2.90% and 16.08%, respectively. MWUV/O3 disinfection also inhibited dark resurrection of E. coli and gave a maximum dark resurrection rate of 0.0036%. Electron paramagnetic resonance spectroscopy indicated that more hydroxyl radicals were generated during MWUV/O3 treatment. Scanning electron microscopy and laser confocal scanning microscopy observations indicated that O3 played a key role in breaking down the cell structure. MWUV/O3 treatment gave a good disinfection effect on fecal coliform bacteria in actual domestic wastewater. The results indicated that inactivation of bacteria can be more effectively achieved by MWUV treatment with O3.


Asunto(s)
Ozono , Purificación del Agua , Desinfección/métodos , Aguas Residuales , Escherichia coli , Microondas , Rayos Ultravioleta , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA