Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 17412, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833344

RESUMEN

Prodigiosin, a red pigment produced by Hahella chejuensis, a marine-derived microorganism, has several biological functions, including antimicrobial activity and inflammatory relief. In this study, the antibacterial activity of prodigiosin against skin microorganisms was explored. Paper disc assay on skin bacterial cells revealed that Cutibacterium acnes related to acne vulgaris highly susceptible to prodigiosin. MIC (Minimal Inhibitory Concentration) and MBC (Minimal Bactericidal Concentration) were determined on Cutibacterium species. The RNA-seq analysis of prodigiosin-treated C. acnes cells was performed to understand the antibacterial mechanism of prodigiosin. Among changes in the expression of hundreds of genes, the expression of a stress-responsive sigma factor encoded by sigB increased. Conversely, the gene expression of cell wall biosynthesis and energy metabolism was inhibited by prodigiosin. Specifically, the expression of genes related to the metabolism of porphyrin, a pro-inflammatory metabolite, was significantly reduced. Therefore, prodigiosin could be used to control C. acnes. Our study provided new insights into the antimicrobial mechanism of prodigiosin against C. acnes strains.


Asunto(s)
Acné Vulgar , Prodigiosina , Humanos , Prodigiosina/farmacología , Transcriptoma , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Acné Vulgar/microbiología , Pruebas de Sensibilidad Microbiana , Propionibacterium acnes/genética
2.
J Microbiol ; 61(8): 715-727, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37665555

RESUMEN

Enterohemorrhagic Escherichia coli (EHEC) is a specific subset of Shiga toxin-producing Escherichia coli (STEC) strains that are characterized by their ability to cause bloody diarrhea (hemorrhagic colitis) and potentially life-threatening, extraintestinal complications such as hemolytic uremic syndrome (HUS), which is associated with acute renal failure., contributing to severe clinical outcomes. The Shiga toxins (Stxs), produced by EHEC, are primary virulence factors. These potent cytotoxins are composed of one enzymatically active A subunit (StxA) and five receptor-binding B subunits (StxB). Although the toxins are primarily associated with cytotoxic effects, they also elicit other pathogenic consequences due to their induction of a number of biological processes, including apoptosis through ER-stress, pro-inflammatory responses, autophagy, and post-translational modification (PTM). Moreover, several studies have reported the association between Stxs and extracellular vesicles (EVs), including microvesicles and exosomes, demonstrating that Stx-containing EVs secreted by intoxicated macrophages are taken up by recipient cells, such as toxin-sensitive renal proximal tubular epithelial cells. This mechanism likely contributes to the spreading of Stxs within the host, and may exacerbate gastrointestinal illnesses and kidney dysfunction. In this review, we summarize recent findings relating to the host responses, in different types of cells in vitro and in animal models, mediated by Stxs-containing exosomes. Due to their unique properties, EVs have been explored as therapeutic agents, drug delivery systems, and diagnostic tools. Thus, potential therapeutic applications of EVs in EHEC Stxs-mediated pathogenesis are also briefly reviewed.


Asunto(s)
Escherichia coli Enterohemorrágica , Infecciones por Escherichia coli , Vesículas Extracelulares , Síndrome Hemolítico-Urémico , Escherichia coli Shiga-Toxigénica , Animales , Toxina Shiga , Toxinas Shiga/toxicidad , Infecciones por Escherichia coli/patología
3.
Front Immunol ; 14: 1168064, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37435069

RESUMEN

Background: A growing body of evidence suggests that particulate matter (PM10) enters the gastrointestinal (GI) tract directly, causing the GI epithelial cells to function less efficiently, leading to inflammation and an imbalance in the gut microbiome. PM10 may, however, act as an exacerbation factor in patients with inflamed intestinal epithelium, which is associated with inflammatory bowel disease. Objective: The purpose of this study was to dissect the pathology mechanism of PM10 exposure in inflamed intestines. Methods: In this study, we established chronically inflamed intestinal epithelium models utilizing two-dimensional (2D) human intestinal epithelial cells (hIECs) and 3D human intestinal organoids (hIOs), which mimic in vivo cellular diversity and function, in order to examine the deleterious effects of PM10 in human intestine-like in vitro models. Results: Inflamed 2D hIECs and 3D hIOs exhibited pathological features, such as inflammation, decreased intestinal markers, and defective epithelial barrier function. In addition, we found that PM10 exposure induced a more severe disturbance of peptide uptake in inflamed 2D hIECs and 3D hIOs than in control cells. This was due to the fact that it interferes with calcium signaling, protein digestion, and absorption pathways. The findings demonstrate that PM10-induced epithelial alterations contribute to the exacerbation of inflammatory disorders caused by the intestine. Conclusions: According to our findings, 2D hIEC and 3D hIO models could be powerful in vitro platforms for the evaluation of the causal relationship between PM exposure and abnormal human intestinal functions.


Asunto(s)
Células Epiteliales , Intestinos , Humanos , Organoides , Señalización del Calcio , Inflamación , Material Particulado/efectos adversos
4.
J Med Virol ; 95(7): e28894, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37386895

RESUMEN

Severe fever with thrombocytopenia syndrome virus (SFTSV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause the hyperproduction of inflammatory cytokines, which have pathological effects in patient including severe or fatal cytokine storms. To characterize the effect of SFTSV and SARS-CoV-2 infection on the production of cytokines in severe fever with thrombocytopenia syndrome (SFTS) and COVID-19 patients, we performed an analysis of cytokines in SFTS and COVID-19 patients and also investigated the role of interleukin-10 (IL-10) in vitro studies: lipopolysaccharide-induced THP-1-derived macrophages, SFTSV infection of THP-1 cells, and SARS-CoV-2 infection of THP-1 cells. In this study, we found that levels of both IL-10 and IL-6 were significantly elevated, the level of transforming growth factor-ß (TGF-ß) was significantly decreased and IL-10 was elevated earlier than IL-6 in severe and critical COVID-19 and fatal SFTS patients, and inhibition of IL-10 signaling decreased the production of IL-6 and elevated that of TGF-ß. Therefore, the hyperproduction of IL-10 and IL-6 and the low production of TGF-ß have been linked to cytokine storm-induced mortality in fatal SFTS and severe and critically ill COVID-19 patients and that IL-10 can play an important role in the host immune response to severe and critical SARS-CoV-2 and fatal SFTSV infection.


Asunto(s)
COVID-19 , Síndrome de Trombocitopenia Febril Grave , Humanos , Síndrome de Liberación de Citoquinas , Citocinas , Interleucina-10 , Interleucina-6 , SARS-CoV-2 , Factor de Crecimiento Transformador beta
5.
Immune Netw ; 23(2): e19, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37179748

RESUMEN

Endemic human coronaviruses (HCoVs) have been evidenced to be cross-reactive to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although a correlation exists between the immunological memory to HCoVs and coronavirus disease 2019 (COVID-19) severity, there is little experimental evidence for the effects of HCoV memory on the efficacy of COVID-19 vaccines. Here, we investigated the Ag-specific immune response to COVID-19 vaccines in the presence or absence of immunological memory against HCoV spike Ags in a mouse model. Pre-existing immunity against HCoV did not affect the COVID-19 vaccine-mediated humoral response with regard to Ag-specific total IgG and neutralizing Ab levels. The specific T cell response to the COVID-19 vaccine Ag was also unaltered, regardless of pre-exposure to HCoV spike Ags. Taken together, our data suggest that COVID-19 vaccines elicit comparable immunity regardless of immunological memory to spike of endemic HCoVs in a mouse model.

6.
Exp Mol Med ; 55(5): 952-964, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37121971

RESUMEN

Epigenetic alterations, especially histone methylation, are key factors in cell migration and invasion in cancer metastasis. However, in lung cancer metastasis, the mechanism by which histone methylation regulates metastasis has not been fully elucidated. Here, we found that the histone methyltransferase SMYD2 is overexpressed in lung cancer and that knockdown of SMYD2 could reduce the rates of cell migration and invasion in lung cancer cell lines via direct downregulation of SMAD3 via SMYD2-mediated epigenetic regulation. Furthermore, using an in vitro epithelial-mesenchymal transition (EMT) system with a Transwell system, we generated highly invasive H1299 (In-H1299) cell lines and observed the suppression of metastatic features by SMYD2 knockdown. Finally, two types of in vivo studies revealed that the formation of metastatic tumors by shSMYD2 was significantly suppressed. Thus, we suggest that SMYD2 is a potential metastasis regulator and that the development of SMYD2-specific inhibitors may help to increase the efficacy of lung cancer treatment.


Asunto(s)
Histonas , Neoplasias Pulmonares , Humanos , Histonas/metabolismo , Histona Metiltransferasas/metabolismo , Epigénesis Genética , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Proliferación Celular , Neoplasias Pulmonares/genética , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Proteína smad3/genética , Proteína smad3/metabolismo
7.
J Microbiol Biotechnol ; 33(5): 559-573, 2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-36859335

RESUMEN

Shiga toxin (Stxs)-producing enterohaemorrhagic Escherichia coli (EHEC) and Shigella dysenteriae serotype 1 are major causative agents of severe bloody diarrhea (known as hemorrhagic colitis) and hemolytic uremic syndrome (HUS) associated with extraintestinal complications such as acute renal failure and neurologic impairment in infected patients under 9 years of age. Extreme nephrotoxicity of Stxs in HUS patients is associated with severe outcomes, highlighting the need to develop technologies to detect low levels of the toxin in environmental or food samples. Currently, the conventional polymerase chain reaction (PCR) or immunoassay is the most broadly used assay to detect the toxin. However, these assays are laborious, time-consuming, and costly. More recently, numerous studies have described novel, highly sensitive, and portable methods for detecting Stxs from EHEC. To contextualize newly emerging Stxs detection methods, we briefly explain the basic principles of these methods, including lateral flow assays, optical detection, and electrical detection. We subsequently describe existing and newly emerging rapid detection technologies to identify and measure Stxs.


Asunto(s)
Escherichia coli Enterohemorrágica , Síndrome Hemolítico-Urémico , Humanos , Toxinas Shiga/genética , Toxinas Shiga/toxicidad , Toxina Shiga/genética , Síndrome Hemolítico-Urémico/diagnóstico , Escherichia coli Enterohemorrágica/genética , Shigella dysenteriae
8.
Environ Pollut ; 317: 120741, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36435285

RESUMEN

Atmospheric particulate matter (PM) contains a mixture of chemical and biological elements that pose threat to human health by increasing susceptibility to respiratory diseases. Although the identification of the microorganisms composing the PM has been assessed, their immunological impacts are still questionable. Here, we examined the mechanisms responsible for the pathogenicity of Pseudomonas stutzeri PM101005 (PMPS), a bacterium isolated from fine dust, in lung epithelial cells, alveolar cells, and macrophages. Relative to its comparative strain Pseudomonas stutzeri (PS), infections with PMPS induced higher production of inflammatory cytokines and chemokines, mediated by the activation of NF-κB and MAPK signaling pathways. Additionally, with three-dimensional (3D) airway spheroids which mimic the human bronchial epithelium, we confirmed that PMPS infections lead to relatively higher induction of pro-inflammatory cytokines than PM infections. Consistent results were observed in murine models as the infections with PMPS provoked greater inflammatory responses than the infections with PS. These PMPS-induced responses were mediated by the signaling pathways of the Toll-like receptors (TLRs), which regulated PMPS infection and played an important role in the expression of the antibiotic peptide ß-defensin 3 (BD3) that suppressed PMPS proliferation. Moreover, PM pretreatment enhanced inflammatory responses and tissue damage of PMPS, while reducing BD3 expression. Overall, these results indicate that PM-isolated PMPS induce TLR-mediated inflammatory responses in lung tissues, and contributes to the understanding of the etiology of PM-induced respiratory damage.


Asunto(s)
Material Particulado , Pseudomonas stutzeri , Ratones , Humanos , Animales , Material Particulado/toxicidad , Material Particulado/metabolismo , Pseudomonas stutzeri/metabolismo , Pulmón/metabolismo , Citocinas/metabolismo , Transducción de Señal
9.
Exp Mol Med ; 54(11): 1901-1912, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36352257

RESUMEN

Although many cohort studies have reported that long-term exposure to particulate matter (PM) can cause lung cancer, the molecular mechanisms underlying the PM-induced increase in cancer metastasis remain unclear. To determine whether PM contributes to cancer metastasis, cancer cells were cultured with conditioned medium from PM-treated THP1 cells, and the migration ability of the treated cancer cells was assessed. The key molecules involved were identified using RNA-seq analysis. In addition, metastatic ability was analyzed in vivo by injection of cancer cells into the tail vein and intratracheal injection of PM into the lungs of C57BL/6 mice. We found that PM enhances the expression of heparin-binding EGF-like growth factor (HBEGF) in macrophages, which induces epithelial-to-mesenchymal transition (EMT) in cancer cells, thereby increasing metastasis. Macrophage stimulation by PM results in activation and subsequent nuclear translocation of the aryl hydrocarbon receptor and upregulation of HBEGF. Secreted HBEGF activates EGFR on the cancer cell surface to induce EMT, resulting in increased migration and invasion in vitro and increased metastasis in vivo. Therefore, our study reveals a critical PM-macrophage-cancer cell signaling axis mediating EMT and metastasis and provides an effective therapeutic approach for PM-induced malignancy.


Asunto(s)
Transición Epitelial-Mesenquimal , Factor de Crecimiento Similar a EGF de Unión a Heparina , Macrófagos , Metástasis de la Neoplasia , Material Particulado , Animales , Ratones , Línea Celular Tumoral , Factor de Crecimiento Similar a EGF de Unión a Heparina/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Material Particulado/efectos adversos
10.
Biosensors (Basel) ; 12(10)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36290925

RESUMEN

Staphylococcal enterotoxin B (SEB) is a potent bacterial toxin that causes inflammatory stimulation and toxic shock, thus it is necessary to detect SEB in food and environmental samples. Here, we developed a sensitive immunodetection system using monoclonal antibodies (mAbs). Our study is the first to employ a baculovirus expression vector system (BEVS) to produce recombinant wild-type SEB. BEVS facilitated high-quantity and pure SEB production from suspension-cultured insect cells, and the SEB produced was characterized by mass spectrometry analysis. The SEB was stable at 4 °C for at least 2 years, maintaining its purity, and was further utilized for mouse immunization to generate mAbs. An optimal pair of mAbs non-competitive to SEB was selected for sandwich enzyme-linked immunosorbent assay-based immunodetection. The limit of detection of the immunodetection method was 0.38 ng/mL. Moreover, it displayed higher sensitivity in detecting SEB than commercially available immunodetection kits and retained detectability in various matrices and S. aureus culture supernatants. Thus, the results indicate that BEVS is useful for producing pure recombinant SEB with its natural immunogenic property in high yield, and that the developed immunodetection assay is reliable and sensitive for routine identification of SEB in various samples, including foods.


Asunto(s)
Toxinas Bacterianas , Staphylococcus aureus , Ratones , Animales , Baculoviridae , Enterotoxinas/análisis , Ensayo de Inmunoadsorción Enzimática/métodos , Anticuerpos Monoclonales
11.
Cell Mol Immunol ; 19(6): 715-725, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35459853

RESUMEN

Host immune responses, such as those initiated by pattern recognition receptor (PRR) activation, are important for viral clearance and pathogenesis. However, little is known about the interactions of viral proteins with surface PRRs or, more importantly, the association of innate immune activation with viral pathogenesis. In this study, we showed that internal influenza virus proteins were released from infected cells. Among these proteins, nucleoprotein (NP) played a critical role in viral pathogenesis by stimulating neighboring cells through toll-like receptor (TLR)2, TLR4, and the NLR family pyrin domain containing 3 (NLRP3) inflammasome. Through the activation of these PRRs, NP induced the production of interleukin (IL)-1ß and IL-6, which subsequently led to the induction of trypsin. Trypsin induced by NP increased the infectivity of influenza virus, leading to increases in viral replication and pathology upon subsequent viral infection. These results reveal the role of released NP in influenza pathogenesis and highlight the importance of the interactions of internal viral proteins with PRRs in the extracellular compartment during viral pathogenesis.


Asunto(s)
Gripe Humana , Orthomyxoviridae , Receptor Toll-Like 4 , Humanos , Inflamasomas/metabolismo , Gripe Humana/metabolismo , Gripe Humana/virología , Interleucina-1beta/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Nucleoproteínas , Orthomyxoviridae/metabolismo , Receptor Toll-Like 4/metabolismo , Tripsina/metabolismo
12.
ISME J ; 16(5): 1205-1221, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34972816

RESUMEN

The human microbiome plays an essential role in the human immune system, food digestion, and protection from harmful bacteria by colonizing the human intestine. Recently, although the human microbiome affects colorectal cancer (CRC) treatment, the mode of action between the microbiome and CRC remains unclear. This study showed that propionate suppressed CRC growth by promoting the proteasomal degradation of euchromatic histone-lysine N-methyltransferase 2 (EHMT2) through HECT domain E3 ubiquitin protein ligase 2 (HECTD2) upregulation. In addition, EHMT2 downregulation reduced the H3K9me2 level on the promoter region of tumor necrosis factor α-induced protein 1 (TNFAIP1) as a novel direct target of EHMT2. Subsequently, TNFAIP1 upregulation induced the apoptosis of CRC cells. Furthermore, using Bacteroides thetaiotaomicron culture medium, we confirmed EHMT2 downregulation via upregulation of HECTD2 and TNFAIP1 upregulation. Finally, we observed the synergistic effect of propionate and an EHMT2 inhibitor (BIX01294) in 3D spheroid culture models. Thus, we suggest the anticancer effects of propionate and EHMT2 as therapeutic targets for colon cancer treatment and may provide the possibility for the synergistic effects of an EHMT2 inhibitor and microbiome in CRC treatment.


Asunto(s)
Neoplasias Colorrectales , Microbiota , Ubiquitina-Proteína Ligasas/metabolismo , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Propionatos , Regulación hacia Arriba
13.
Mol Med Rep ; 25(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35029293

RESUMEN

Particulate matter (PM) can be categorized by particle size (PM10, PM2.5 and PM1.0), which is an important factor affecting the biological response. Exposure to PM in the air (dust, smoke, dirt and biological contaminants) is clearly associated with lung disease (lung cancer, pneumonia and asthma). Although PM primarily affects lung epithelial cells, the specific response of related cell types to PM remains to be elucidated. The present study performed Gene Ontology (GO) analysis programs (Clustering GO and Database for Annotation, Visualization and Integrated Discovery) on differentially expressed genes in lung epithelial cells (WI­38 VA­13) and fibroblasts (WI­38) following treatment with PM10 and evaluated the cell­specific biological responses related to cell proliferation, apoptosis, adhesion and extracellular matrix production. The results suggested that short­ or long­term exposure to PM may affect cell condition and may consequently be related to several human diseases, including lung cancer and cardiopulmonary disease.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Material Particulado/efectos adversos , Transcriptoma , Contaminantes Atmosféricos , Contaminación del Aire , Adhesión Celular , Línea Celular , Matriz Extracelular/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Pulmón , RNA-Seq
14.
EMBO Mol Med ; 14(1): e14678, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34842355

RESUMEN

Shiga toxins (Stxs) produced by enterohemorrhagic Escherichia coli (EHEC) are the major virulence factors responsible for hemorrhagic colitis, which can lead to life-threatening systemic complications including acute renal failure (hemolytic uremic syndrome) and neuropathy. Here, we report that O-GlcNAcylation, a type of post-translational modification, was acutely increased upon induction of endoplasmic reticulum (ER) stress in host cells by Stxs. Suppression of the abnormal Stx-mediated increase in O-GlcNAcylation effectively inhibited apoptotic and inflammatory responses in Stx-susceptible cells. The protective effect of O-GlcNAc inhibition for Stx-mediated pathogenic responses was also verified using three-dimensional (3D)-cultured spheroids or organoids mimicking the human kidney. Treatment with an O-GlcNAcylation inhibitor remarkably improved the major disease symptoms and survival rate for mice intraperitoneally injected with a lethal dose of Stx. In conclusion, this study elucidates O-GlcNAcylation-dependent pathogenic mechanisms of Stxs and demonstrates that inhibition of aberrant O-GlcNAcylation is a potential approach to treat Stx-mediated diseases.


Asunto(s)
Infecciones por Escherichia coli , Síndrome Hemolítico-Urémico , Animales , Estrés del Retículo Endoplásmico , Síndrome Hemolítico-Urémico/patología , Riñón/patología , Ratones , Toxina Shiga/metabolismo , Toxinas Shiga
15.
J Microbiol Biotechnol ; 31(12): 1624-1631, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34675142

RESUMEN

Prodigiosin as a high-valued compound, which is a microbial secondary metabolite, has the potential for antioxidant and anticancer effects. However, the large-scale production of functionally active Hahella chejuensis-derived prodigiosin by fermentation in a cost-effective manner has yet to be achieved. In the present study, we established carbon source-optimized medium conditions, as well as a procedure for producing prodigiosin by fermentation by culturing H. chejuensis using 10 L and 200 L bioreactors. Our results showed that prodigiosin productivity using 250 ml flasks was higher in the presence of glucose than other carbon sources, including mannose, sucrose, galactose, and fructose, and could be scaled up to 10 L and 200 L batches. Productivity in the glucose (2.5 g/l) culture while maintaining the medium at pH 6.89 during 10 days of cultivation in the 200 L bioreactor was measured and increased more than productivity in the basal culture medium in the absence of glucose. Prodigiosin production from 10 L and 200 L fermentation cultures of H. chejuensis was confirmed by high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) analyses for more accurate identification. Finally, the anticancer activity of crude extracted prodigiosin against human cancerous leukemia THP-1 cells was evaluated and confirmed at various concentrations. Conclusively, we demonstrate that culture conditions for H. chejuensis using a bioreactor with various parameters and ethanol-based extraction procedures were optimized to mass-produce the marine bacterium-derived high purity prodigiosin associated with anti-cancer activity.


Asunto(s)
Gammaproteobacteria/metabolismo , Prodigiosina/metabolismo , Antineoplásicos/aislamiento & purificación , Antineoplásicos/metabolismo , Reactores Biológicos , Carbono/metabolismo , Supervivencia Celular/efectos de los fármacos , Medios de Cultivo/química , Fermentación , Humanos , Prodigiosina/aislamiento & purificación , Células THP-1
16.
Toxins (Basel) ; 13(6)2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208170

RESUMEN

Escherichia coli (EHEC) and Shigella dysenteriae serotype 1 are enterohemorrhagic bacteria that induce hemorrhagic colitis. This, in turn, may result in potentially lethal complications, such as hemolytic uremic syndrome (HUS), which is characterized by thrombocytopenia, acute renal failure, and neurological abnormalities. Both species of bacteria produce Shiga toxins (Stxs), a phage-encoded exotoxin inhibiting protein synthesis in host cells that are primarily responsible for bacterial virulence. Although most studies have focused on the pathogenic roles of Stxs as harmful substances capable of inducing cell death and as proinflammatory factors that sensitize the host target organs to damage, less is known about the interface between the commensalism of bacterial communities and the pathogenicity of the toxins. The gut contains more species of bacteria than any other organ, providing pathogenic bacteria that colonize the gut with a greater number of opportunities to encounter other bacterial species. Notably, the presence in the intestines of pathogenic EHEC producing Stxs associated with severe illness may have compounding effects on the diversity of the indigenous bacteria and bacterial communities in the gut. The present review focuses on studies describing the roles of Stxs in the complex interactions between pathogenic Shiga toxin-producing E. coli, the resident microbiome, and host tissues. The determination of these interactions may provide insights into the unresolved issues regarding these pathogens.


Asunto(s)
Infecciones por Escherichia coli/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Toxinas Shiga/toxicidad , Escherichia coli Shiga-Toxigénica , Animales , Humanos , Probióticos
17.
Mol Oncol ; 15(11): 2989-3002, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34214254

RESUMEN

Dozens of histone methyltransferases have been identified and biochemically characterized, but the pathological roles of their dysfunction in human diseases such as cancer remain largely unclear. Here, we demonstrate the involvement of EHMT1, a histone lysine methyltransferase, in lung cancer. Immunohistochemical analysis indicated that the expression levels of EHMT1 are significantly elevated in human lung carcinomas compared with non-neoplastic lung tissues. Through gene ontology analysis of RNA-seq results, we showed that EHMT1 is clearly associated with apoptosis and the cell cycle process. Moreover, FACS analysis and cell growth assays showed that knockdown of EHMT1 induced apoptosis and G1 cell cycle arrest via upregulation of CDKN1A in A549 and H1299 cell lines. Finally, in 3D spheroid culture, compared to control cells, EHMT1 knockdown cells exhibited reduced aggregation of 3D spheroids and clear upregulation of CDKN1A and downregulation of E-cadherin. Therefore, the results of the present study suggest that EHMT1 plays a critical role in the regulation of cancer cell apoptosis and the cell cycle by modulating CDKN1A expression. Further functional analyses of EHMT1 in the context of human tumorigenesis may aid in the development of novel therapeutic strategies for cancer.


Asunto(s)
Neoplasias Pulmonares , Apoptosis/genética , Ciclo Celular , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación Neoplásica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología
18.
J Microbiol Biotechnol ; 31(3): 475-482, 2021 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-33397835

RESUMEN

Prodigiosins, which are natural tripyrrole red pigments and synthetic derivatives, reportedly have multiple biological effects mainly on various types of cancer cells. However, the effects of bacterial prodigiosin on non-cancerous HaCaT human skin keratinocytes have not been reported. Therefore, the present study aimed to investigate the functional activities of prodigiosin derived from cultures of the bacterium Hahella chejuensis in HaCaT cells. Cell viability, the cell proliferation rate, and reactive oxygen species (ROS) production in vitro were assayed following treatment of HaCaT cells with prodigiosin. Prodigiosin did not cause cytotoxicity and notably increased proliferation of HaCaT cells. Furthermore, prodigiosin reduced ultraviolet (UV) irradiation-induced ROS production and the inflammatory response in HaCaT cells. More importantly, prodigiosin reduced matrix metalloproteinase-9 expression and increased collagen synthesis in UV-irradiated HaCaT cells, demonstrating that it elicits anti-aging effects. In conclusion, our results reveal that H. chejuensis-derived prodigiosin is a potential natural product to develop functional cosmetic ingredients.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Gammaproteobacteria/química , Queratinocitos/efectos de los fármacos , Prodigiosina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular , Colágeno/metabolismo , Citocinas/metabolismo , Células HaCaT , Humanos , Inflamación , Queratinocitos/efectos de la radiación , Metaloproteinasa 9 de la Matriz/metabolismo , Envejecimiento de la Piel , Rayos Ultravioleta
19.
Cell Death Differ ; 28(3): 968-984, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32989241

RESUMEN

Gallbladder carcinoma (GBC) exhibits poor prognosis due to local recurrence, metastasis, and resistance to targeted therapies. Using clinicopathological analyses of GBC patients along with molecular in vitro and tumor in vivo analysis of GBC cells, we showed that reduction of Dsg2 expression was highly associated with higher T stage, more perineural, and lymphatic invasion. Dsg2-depleted GBC cells exhibited significantly enhanced proliferation, migration, and invasiveness in vitro and tumor growth and metastasis in vivo through Src-mediated signaling activation. Interestingly, Dsg2 binding inhibited Src activation, whereas its loss activated cSrc-mediated EGFR plasma membrane clearance and cytoplasmic localization, which was associated with acquired EGFR-targeted therapy resistance and decreased overall survival. Inhibition of Src activity by dasatinib enhanced therapeutic response to anti-EGFR therapy. Dsg2 status can help stratify predicted patient response to anti-EGFR therapy and Src inhibition could be a promising strategy to improve the clinical efficacy of EGFR-targeted therapy.


Asunto(s)
Carcinoma/tratamiento farmacológico , Desmogleína 2/metabolismo , Resistencia a Antineoplásicos/genética , Neoplasias de la Vesícula Biliar/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Familia-src Quinasas/metabolismo , Animales , Carcinoma/enzimología , Carcinoma/genética , Carcinoma/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Desmogleína 2/genética , Progresión de la Enfermedad , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias de la Vesícula Biliar/enzimología , Neoplasias de la Vesícula Biliar/genética , Neoplasias de la Vesícula Biliar/patología , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto , Familia-src Quinasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...