Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Korean J Physiol Pharmacol ; 18(6): 509-16, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25598666

RESUMEN

Radiation therapy for variety of human solid tumors utilizes mechanism of cell death after DNA damage caused by radiation. In response to DNA damage, cytochrome c was released from mitochondria by activation of pro-apoptotic Bcl-2 family proteins, and then elicits massive Ca(2+) release from the ER that lead to cell death. It was also suggested that irradiation may cause the deregulation of Ca(2+) homeostasis and trigger programmed cell death and regulate death specific enzymes. Thus, in this study, we investigated how cellular Ca(2+) metabolism in RKO cells, in comparison to radiation-resistant A549 cells, was altered by gamma (γ)-irradiation. In irradiated RKO cells, Ca(2+) influx via activation of NCX reverse mode was enhanced and a decline of [Ca(2+)]i via forward mode was accelerated. The amount of Ca(2+) released from the ER in RKO cells by the activation of IP3 receptor was also enhanced by irradiation. An increase in [Ca(2+)]i via SOCI was enhanced in irradiated RKO cells, while that in A549 cells was depressed. These results suggest that γ-irradiation elicits enhancement of cellular Ca(2+) metabolism in radiation-sensitive RKO cells yielding programmed cell death.

2.
Exp Mol Med ; 39(4): 458-68, 2007 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-17934333

RESUMEN

Na+-Ca2+ exchanger (NCX) transports Ca2+ coupled with Na+ across the plasma membrane in a bi-directional mode. Ca2+ flux via NCX mediates osteogenic processes, such as formation of extracellular matrix proteins and bone nodules. However, it is not clearly understood how the NCX regulates cellular Ca2+ movements in osteogenic processes. In this study, the role of NCX in modulating Ca2+ content of intracellular stores ([Ca2+]ER) was investigated by measuring intracellular Ca2+ activity in isolated rat osteoblasts. Removal of extracellular Na+ elicited a transient increase of intracellular Ca2+ concentration ([Ca2+]i). Pretreatment of antisense oligodeoxynucleotide (AS) against NCX depressed this transient Ca2+ rise and raised the basal level of [Ca2+]i. In AS-pretreated cells, the expression and activity of alkaline phosphatase (ALP), an osteogenic marker, were decreased. However, the cell viability was not affected by AS-pretreatment. Suppression of NCX activity by the AS-pretreatment decreased ATP-activated Ca2+ release from intracellular stores and significantly enhanced Ca2+ influx via store operated calcium influx (SOCI), compared to those of S-pretreated or control cells. These results strongly suggest that NCX has a regulatory role in cellular Ca2+ pathways in osteoblasts by modulating intracellular Ca2+ content.


Asunto(s)
Calcio/metabolismo , Osteoblastos/fisiología , Intercambiador de Sodio-Calcio/fisiología , Fosfatasa Alcalina/metabolismo , Animales , Membrana Celular/metabolismo , Supervivencia Celular , Células Cultivadas , Citoplasma/metabolismo , Retículo Endoplásmico/metabolismo , Espacio Intracelular/metabolismo , Oligodesoxirribonucleótidos Antisentido/farmacología , Osteoblastos/efectos de los fármacos , Ratas , Transducción de Señal , Sodio/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA