Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomater Res ; 28: 0030, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947863

RESUMEN

Electro-mechanical co-stimulation of cells can be a useful cue for tissue engineering. However, reliable co-stimulation platforms still have limitations due to low durability of the components and difficulty in optimizing the stimulation parameters. Although various electro-mechanical co-simulation systems have been explored, integrating materials and components with high durability is still limited. To tackle this problem, we designed an electro-mechanical co-stimulation system that facilitates uniaxial cyclic stretching, electrical stimulation, and optical monitoring. This system utilizes a robust and autoclavable stretchable multielectrode array housed within a compact mini-incubator. To illustrate its effectiveness, we conducted experiments that highlighted how electro-mechanical co-stimulation using this system can enhance the maturation of cardiomyocytes derived from human induced pluripotent stem cells. The results showed great potential of our co-stimulation platform as an effective tool for tissue engineering.

2.
Adv Mater ; : e2403150, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38699932

RESUMEN

In the era of artificial intelligence (AI), there is a growing interest in replicating human sensory perception. Selective and sensitive bio-inspired sensory receptors with synaptic plasticity have recently gained significant attention in developing energy-efficient AI perception. Various bio-inspired sensory receptors and their applications in AI perception are reviewed here. The critical challenges for the future development of bio-inspired sensory receptors are outlined, emphasizing the need for innovative solutions to overcome hurdles in sensor design, integration, and scalability. AI perception can revolutionize various fields, including human-machine interaction, autonomous systems, medical diagnostics, environmental monitoring, industrial optimization, and assistive technologies. As advancements in bio-inspired sensing continue to accelerate, the promise of creating more intelligent and adaptive AI systems becomes increasingly attainable, marking a significant step forward in the evolution of human-like sensory perception.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38604985

RESUMEN

Challenges such as poor dispersion and insufficient polarization of BaTiO3 (BTO) nanoparticles (NPs) within poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) composites have hindered their piezoelectricity, limiting their uses in pressure sensors, nanogenerators, and artificial sensory synapses. Here, we introduce a high-performance piezoelectric nanocomposite material consisting of P(VDF-TrFE)/modified-BTO (mBTO) NPs for use as a self-activating component in a piezotronic artificial mechanoreceptor. To generate high-performance piezoelectric nanocomposite materials, the surface of BTO is hydroxylated, followed by the covalent attachment of (3-aminopropyl)triethoxysilane to improve the dispersibility of mBTO NPs within the P(VDF-TrFE) matrix. We also aim to enhance the crystallization degree of P(VDF-TrFE), the efficiency characteristics of mBTO, and the poling efficiency, even when incorporating small amounts of mBTO NPs. The piezoelectric potential mechanically induced from the P(VDF-TrFE)/mBTO NPs nanocomposite was three times greater than that from P(VDF-TrFE) and twice as high as that from the P(VDF-TrFE)/BTO NPs nanocomposite. The piezoelectric potential generated by mechanical stimuli on the piezoelectric nanocomposite was utilized to activate the synaptic ionogel-gated field-effect transistor for the development of self-powered piezotronics artificial mechanoreceptors on a polyimide substrate. The device successfully emulated fast-adapting (FA) functions found in biological FA mechanoreceptors. This approach has great potential for applications to future intelligent tactile perception technology.

4.
Small ; : e2310013, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38477696

RESUMEN

Nanomaterials like graphene and transition metal dichalcogenides are being explored for developing artificial photosensory synapses with low-power optical plasticity and high retention time for practical nervous system implementation. However, few studies are conducted on Tellurium (Te)-based nanomaterials due to their direct and small bandgaps. This paper reports the superior photo-synaptic properties of covalently bonded Tellurium sulfur oxide (TeSOx ) and Tellurium selenium oxide (TeSeOx )nanomaterials, which are fabricated by incorporating S and Se atoms on the surface of Te multiropes using vapor deposition. Unlike pure Te multiropes, the TeSOx and TeSeOx multiropes exhibit controllable temporal dynamics under optical stimulation. For example, the TeSOx multirope-based transistor displays a photosensory synaptic response to UV light (λ = 365 nm). Furthermore, the TeSeOx multirope-based transistor exhibits photosensory synaptic responses to UV-vis light (λ = 365, 565, and 660 nm), reliable electrical performance, and a combination of both photodetector and optical artificial synaptic properties with a maximum responsivity of 1500 AW-1 to 365 nm UV light. This result is among the highest reported for Te-heterostructure-based devices, enabling optical artificial synaptic applications with low voltage spikes (1 V) and low light intensity (21 µW cm-2 ), potentially useful for optical neuromorphic computing.

5.
Biosens Bioelectron ; 248: 115987, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38176256

RESUMEN

Point-of-care testing (POCT) for low-concentration protein biomarkers remains challenging due to limitations in biosensor sensitivity and platform integration. This study addresses this gap by presenting a novel approach that integrates a metal-enhanced fluorescence (MEF) biosensor within a capillary flow-driven microfluidic cartridge (CFMC) for the ultrasensitive detection of the Parkinson's disease biomarker, aminoacyl-tRNA synthetase complex interacting multi-functional protein 2 (AIMP-2). Crucial point to this approach is the orientation-controlled immobilization of capture antibody on a nanodimple-structured MEF substrate within the CFMC. This strategy significantly enhances fluorescence signals without quenching, enabling accurate quantification of low-concentration AIMP-2 using a simple digital fluorescence microscope with a light-emitting diode excitation source and a digital camera. The resulting platform exhibits exceptional sensitivity, achieving a limit of detection in the pg/mL range for AIMP-2 in human serum. Additionally, the CFMC design incorporates a capillary-driven passive sample transport mechanism, eliminating the need for external pumps and further simplifying the detection process. Overall, this work demonstrates the successful integration of MEF biosensing with capillary microfluidics for point-of-care applications.


Asunto(s)
Técnicas Biosensibles , Técnicas Analíticas Microfluídicas , Humanos , Microfluídica , Técnicas Biosensibles/métodos , Técnicas Analíticas Microfluídicas/métodos , Inmunoensayo/métodos , Biomarcadores , Oro
6.
Biosens Bioelectron ; 237: 115468, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37343311

RESUMEN

Wearable point-of-care testing devices are essential for personalized and decentralized healthcare. They can collect biofluid samples from the human body and use an analyzer to detect biomolecules. However, creating an integrated system is challenging due to the difficulty of achieving conformality to the human body, regulating the collection and transport of biofluids, developing a biosensor patch capable of precise biomolecule detection, and establishing a simple operation protocol that requires minimal wearer attention. In this study, we propose using a hollow microneedle (HMN) based on soft hollow microfibers and a microneedle-integrated microfluidic biosensor patch (MIMBP) capable of integrated blood sampling and electrochemical biosensing of biomolecules. The soft MIMBP includes a stretchable microfluidic device, a flexible electrochemical biosensor, and a HMN array made from flexible hollow microfibers. The HMNs are fabricated by electroplating flexible and mechanically durable hollow microfibers made from a nanocomposite matrix of polyimide, a poly (vinylidene fluoride-co-trifluoroethylene) copolymer, and single-walled carbon nanotubes. The MIMBP uses the negative pressure generated by a single button push to collect blood and deliver it to a flexible electrochemical biosensor modified with a gold nanostructure and Pt nanoparticles. We have demonstrated that glucose can be accurately measured up to the molar range in whole human blood collected through the microneedle. The MIMBP platform with HMNs has great potential as a foundation for the future development of simple, wearable, self-testing systems for minimally invasive biomolecule detection. This platform capable of sequential blood collection and high sensitivity glucose detection, which are ideal for personalized and decentralized healthcare.


Asunto(s)
Técnicas Biosensibles , Nanotubos de Carbono , Dispositivos Electrónicos Vestibles , Humanos , Técnicas Biosensibles/métodos , Microfluídica , Glucosa
7.
ACS Appl Mater Interfaces ; 15(18): 21754-21765, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37104719

RESUMEN

Existing affinity-based fluorescence biosensing systems for monitoring of biomarkers often utilize a fixed solid substrate immobilized with capture probes limiting their use in continuous or intermittent biomarker detection. Furthermore, there have been challenges of integrating fluorescence biosensors with a microfluidic chip and low-cost fluorescence detector. Herein, we demonstrated a highly efficient and movable fluorescence-enhanced affinity-based fluorescence biosensing platform that can overcome the current limitations by combining fluorescence enhancement and digital imaging. Fluorescence-enhanced movable magnetic beads (MBs) decorated with zinc oxide nanorods (MB-ZnO NRs) were used for digital fluorescence-imaging-based aptasensing of biomolecules with improved signal-to-noise ratio. High stability and homogeneous dispersion of photostable MB-ZnO NRs were obtained by grafting bilayered silanes onto the ZnO NRs. The ZnO NRs formed on MB significantly improved the fluorescence signal up to 2.35 times compared to the MB without ZnO NRs. Moreover, the integration of a microfluidic device for flow-based biosensing enabled continuous measurements of biomarkers in an electrolytic environment. The results showed that highly stable fluorescence-enhanced MB-ZnO NRs integrated with a microfluidic platform have significant potential for diagnostics, biological assays, and continuous or intermittent biomonitoring.


Asunto(s)
Microfluídica , Óxido de Zinc , Bioensayo , Biomarcadores , Dispositivos Laboratorio en un Chip
8.
Int J Biol Macromol ; 234: 123725, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36822151

RESUMEN

Hydrogel-based electrolytes for flexible solid-state supercapacitors (SSCs) have received significant attention due to their mechanical robustness and stable electrochemical performance over a wide temperature range. However, achieving flame retardancy in such SSCs at subzero temperatures to increase their practical utility remains challenging. Furthermore, there is a need for sustainable and bio-friendly SSCs that use natural polymer-based hydrogel electrolytes. This study reports a novel approach for developing a chitosan-reinforced anti-freezing ionic conductive gelatin hydrogel to meet these demands. Immersion of chitosan-containing gelatin hydrogels in salt solutions caused chitosan precipitation, resulting in composite hydrogels. The precipitated chitosan contributes to the reinforcement of the gelatin hydrogel network, resulting in a high mechanical toughness of up to 3.81 MJ/m3, a fracture energy of 26 kJ/m2, anti-freezing properties (below -30 °C), and excellent flame retardancy without softening. Furthermore, the hydrogel exhibits excellent electrochemical performance, with an ionic conductivity ranging from 72 mS/cm at room temperature (26 °C) to 39 mS/cm at -30 °C. The proposed hydrogel exhibits potential for use in SSC as a gel polymer electrolyte. This study demonstrates a novel strategy for controlling the mechanical, thermal, and electrochemical characteristics of flexible supercapacitors using biological macromolecules.


Asunto(s)
Quitosano , Retardadores de Llama , Gelatina , Hidrogeles , Electrólitos , Polímeros
9.
Nat Commun ; 14(1): 821, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36788242

RESUMEN

The human olfactory system comprises olfactory receptor neurons, projection neurons, and interneurons that perform remarkably sophisticated functions, including sensing, filtration, memorization, and forgetting of chemical stimuli for perception. Developing an artificial olfactory system that can mimic these functions has proved to be challenging. Herein, inspired by the neuronal network inside the glomerulus of the olfactory bulb, we present an artificial chemosensory neuronal synapse that can sense chemical stimuli and mimic the functions of excitatory and inhibitory neurotransmitter release in the synapses between olfactory receptor neurons, projection neurons, and interneurons. The proposed device is based on a flexible organic electrochemical transistor gated by the potential generated by the interaction of gas molecules with ions in a chemoreceptive ionogel. The combined use of a chemoreceptive ionogel and an organic semiconductor channel allows for a long retentive memory in response to chemical stimuli. Long-term memorization of the excitatory chemical stimulus can be also erased by applying an inhibitory electrical stimulus due to ion dynamics in the chemoresponsive ionogel gate electrolyte. Applying a simple device design, we were able to mimic the excitatory and inhibitory synaptic functions of chemical synapses in the olfactory system, which can further advance the development of artificial neuronal systems for biomimetic chemosensory applications.


Asunto(s)
Neuronas Receptoras Olfatorias , Sinapsis , Humanos , Sinapsis/fisiología , Transmisión Sináptica , Bulbo Olfatorio/fisiología , Interneuronas/fisiología
10.
ACS Sens ; 7(8): 2188-2197, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35930745

RESUMEN

Accurate, onsite detection of pathogenic bacteria from food matrices is required to rapidly respond to pathogen outbreaks. However, accurately detecting whole-cell bacteria in large sample volumes without an enrichment step remains a challenge. Therefore, bacterial samples must be concentrated, identified, and quantified. We developed a tunable magnetic capturing cartridge (TMCC) and combined it with a portable digital fluorescence reader for quick, onsite, quantitative detection of Staphylococcus aureus. The TMCC platform integrates an absorption pad impregnated with water-soluble polyvinyl alcohol (PVA) with an injection-molded polycarbonate (PC) plate that has a hard magnet on its back and an acrylonitrile-butadiene-styrene case. An S. aureus-specific antibody conjugated with magnetic nanoparticles was used to concentrate bacteria from a large-volume sample and capture bacteria within the TMCC. The retention time for capturing bacteria on the TMCC was adjusted by controlling the concentration and volume of the PVA solution. Concentrated bacterial samples bound to target-specific aptamer probes conjugated with quantum dots were loaded into the TMCC for a controlled time, followed by attachment of the bacteria to the PC plate and removal of unbound aptamer probes with wash buffer. The captured bacteria were quantified using a digital fluorescence reader equipped with an embedded program that automatically counts fluorescently tagged bacteria. The bacterial count made using the TMCC was comparable to a standard plate count (R2 = 0.9898), with assay sensitivity and specificity of 94.3 and 100%, respectively.


Asunto(s)
Aptámeros de Nucleótidos , Infecciones Estafilocócicas , Bacterias , Humanos , Imagen Óptica , Infecciones Estafilocócicas/diagnóstico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus
11.
J Mater Chem B ; 10(23): 4491-4500, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35615858

RESUMEN

Imaging of bacterial infections can be used for a wide range of investigations, including diagnosis and pathogenesis of infections, and molecular probes targeting biological processes during infection have been used extensively. However, in vivo visualization of bacteria using molecular probes is still challenging due to the difficulty of directly targeting specific bacteria. Here, we propose a new fluorescent nano-bio probe based on a quorum-sensing (QS) antagonist for imaging drug-resistant bacteria. Because most bacteria use QS-based communication to synchronize the regulation of virulence gene expression during infection, QS-based probes can be used to assess the in vivo localization and distribution of pathogenic bacteria. Our developed fluorescent, quorum-based nano-bio probes (QNBPs) target agr-activation in multiple-drug resistant Staphylococcus aureus (MRSA) and were successfully used for in vivo localization of MRSA in sepsis and dermonecrotic animal infection models. Interestingly, we found that QNBPs can diffuse through biofilms and thus provide a new strategy for detecting MRSA embedded within a biofilm. Our findings suggest that our QNBPs have great potential for directly imaging pathogenic bacteria.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Colorantes Fluorescentes , Staphylococcus aureus Resistente a Meticilina/genética , Sondas Moleculares , Infecciones Estafilocócicas/diagnóstico por imagen , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/metabolismo
12.
Int J Biol Macromol ; 209(Pt B): 1665-1675, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35487373

RESUMEN

Current hydrogel strain sensors have met assorted essential requirements of wearing comfort, mechanical toughness, and strain sensitivity. However, an increment in the toughness of a hydrogel usually leads to an increase in elastic moduli that could be unfavorable for wearing comfort. In addition, traits of biofriendly and sustainability require synthesis of the hydrogels from natural polymer-based networks. We propose a novel strategy to fabricate an ionic conductive organohydrogel from natural biological macromolecule "gelatin" and polyacid "tannic acid" to resolve these challenges. Tannic acid modified the structure of the gelatin network in the ionic conductive organohydrogels, that not only led to an increase in toughness accompanying a decrease in elastic moduli but also headed to higher strain sensitivity and tunability. The proposed methodology exhibited tunable tensile modulus from 27 to 13 kPa, tensile strength from 287 to 325 kPa, elongation at fracture from 510 to 620%, toughness from 500 to 550 kJ/m3, conductivity from 0.29 to 0.8 S/m, and strain sensitivity (GF = 1.4-6.5). Moreover, the proposed organohydrogel exhibited excellent freezing tolerance. This study provides a facile yet powerful strategy to tune the mechanical and electrical properties of organohydrogels which can be adapted to various wearable sensors.


Asunto(s)
Gelatina , Dispositivos Electrónicos Vestibles , Conductividad Eléctrica , Hidrogeles/química , Iones , Taninos
13.
Nanoscale ; 14(13): 5102-5111, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35297929

RESUMEN

Stretchable broadband photodetectors (PDs) are attractive for applications in wearable optoelectronics and personal healthcare. However, the development of stretchable broadband PDs is limited by difficulties in obtaining materials, designing device structures, and finding reliable fabrication processes. Here, we report stretchable broadband PDs by forming organic-inorganic vertical multiheterojunctions on a three-dimensionally micro-patterned stretchable substrate (3D-MPSS). The stress-adaptable 3D-MPSS structure allows all layers of the PD coated on it to sustain tensile strains. Generation of photovoltage in the vertical hybrid structure of PbS quantum dots/ZnO nanorods as a photo-responsive material on poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) as a transport channel is considred to be the mechanism of the device response to UV-Vis-NIR. The fabricated PDs present responsivity to UV (365 nm), Vis (565 nm and 660 nm), and NIR (880 nm and 970 nm) light, as well as reliable electrical performance under applied stretching up to 30%.

14.
Micromachines (Basel) ; 12(9)2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34577680

RESUMEN

Biodegradable stretchable electronics have demonstrated great potential for future applications in stretchable electronics and can be resorbed, dissolved, and disintegrated in the environment. Most biodegradable electronic devices have used flexible biodegradable materials, which have limited conformality in wearable and implantable devices. Here, we report a biodegradable, biocompatible, and stretchable composite microfiber of poly(glycerol sebacate) (PGS) and polyvinyl alcohol (PVA) for transient stretchable device applications. Compositing high-strength PVA with stretchable and biodegradable PGS with poor processability, formability, and mechanical strength overcomes the limits of pure PGS. As an application, the stretchable microfiber-based strain sensor developed by the incorporation of Au nanoparticles (AuNPs) into a composite microfiber showed stable current response under cyclic and dynamic stretching at 30% strain. The sensor also showed the ability to monitor the strain produced by tapping, bending, and stretching of the finger, knee, and esophagus. The biodegradable and stretchable composite materials of PGS with additive PVA have great potential for use in transient and environmentally friendly stretchable electronics with reduced environmental footprint.

15.
ACS Appl Mater Interfaces ; 13(33): 39135-39141, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34374274

RESUMEN

Many physiochemical properties of the extracellular matrix (ECM) of muscle tissues, such as nanometer scale dimension, nanotopography, negative charge, and elasticity, must be carefully reproduced to fabricate scaffold materials mimicking muscle tissues. Hence, we developed a muscle tissue ECM-mimicking scaffold using Mo6S3I6 inorganic molecular wires (IMWs). Composed of bio-essential elements and having a nanofibrous structure with a diameter of ∼1 nm and a negative surface charge with high stability, Mo6S3I6 IMWs are ideal for mimicking natural ECM molecules. Once Mo6S3I6 IMWs were patterned on a polydimethylsiloxane surface with an elasticity of 1877.1 ± 22.2 kPa, that is, comparable to that of muscle tissues, the proliferation and α-tubulin expression of myoblasts enhanced significantly. Additionally, the repetitive one-dimensional patterns of Mo6S3I6 IMWs induced the alignment and stretching of myoblasts with enhanced α-tubulin expression and differentiation into myocytes. This study demonstrates that Mo6S3I6 IMWs are promising for mimicking the ECM of muscle tissues.


Asunto(s)
Materiales Biomiméticos/química , Dimetilpolisiloxanos/química , Matriz Extracelular/metabolismo , Nanocables/química , Andamios del Tejido/química , Materiales Biomiméticos/metabolismo , Diferenciación Celular , Proliferación Celular/efectos de los fármacos , Humanos , Yodo/química , Molibdeno/química , Músculos/citología , Mioblastos/citología , Mioblastos/metabolismo , Azufre/química , Propiedades de Superficie , Ingeniería de Tejidos , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
16.
J Clin Med ; 9(7)2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32640699

RESUMEN

Parkinson's disease (PD) is the most common neurodegenerative movement disorder, characterized by olfactory dysfunction in the early stages. α-Synuclein pathologies in the olfactory organs are shown to spread to the brain through the nose-brain axis. We first developed a nasal epithelial PD cellular model by treating RPMI-2650 cells with α-synuclein preformed fibrils (PFF). Upon uptake of PFF, RPMI-2650 cells showed mitochondrial proteome alteration and downregulation of parkin, which has previously been identified as a nasal biomarker of PD. Functional cluster analysis of differentially expressed genes in RPMI-2650 cells revealed various pathways affected by α-synuclein pathology, including the detection of chemical stimulus involved in sensory perception, olfactory receptor activity, and sensory perception of smell. Among genes that were most affected, we validated, by real-time quantitative PCR, the downregulation of MAP3K8, OR10A4, GRM2, OR51B6, and OR9A2, as well as upregulation of IFIT1B, EPN1, OR1D5, LCN, and OTOL1 in PFF-treated RPMI-2650 cells. Subsequent analyses of clinical samples showed a downregulation of OR10A4 and OR9A2 transcripts and an upregulation of IFIT1B in cells isolated from the nasal fluid of PD patients, as compared to those from the controls (cutoff value = 0.5689 for OR9A2, with 72.4% sensitivity and 75% specificity, and 1.4658 for IFIT1B, with 81.8% sensitivity and 77.8% specificity). Expression levels of these nasal PD markers were not altered in nasal fluid cells from SWEDD (scans without evidence of dopaminergic deficits) patients with PD-like motor symptoms. These nasal markers were significantly altered in patients of PD with hyposmia compared to the control hyposmic subjects. Our results validated the α-synuclein-treated nasal epithelial cell model to identify novel biomarkers for PD and suggest the utility of olfactory transcripts, along with olfactory dysfunction, in the diagnosis of PD.

17.
Nat Commun ; 11(1): 2753, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32488078

RESUMEN

Imbuing bio-inspired sensory devices with intelligent functions of human sensory organs has been limited by challenges in emulating the preprocessing abilities of sensory organs such as reception, filtering, adaptation, and sensory memory at the device level itself. Merkel cells, which is a part of tactile sensory organs, form synapse-like connections with afferent neuron terminals referred to as Merkel cell-neurite complexes. Here, inspired by structure and intelligent functions of Merkel cell-neurite complexes, we report a flexible, artificial, intrinsic-synaptic tactile sensory organ that mimics synapse-like connections using an organic synaptic transistor with ferroelectric nanocomposite gate dielectric of barium titanate nanoparticles and poly(vinylidene fluoride-trifluoroethylene). Modulation of the post-synaptic current of the device induced by ferroelectric dipole switching due to triboelectric-capacitive coupling under finger touch allowed reception and slow adaptation. Modulation of synaptic weight by varying the nanocomposite composition of gate dielectric layer enabled tuning of filtering and sensory memory functions.


Asunto(s)
Órganos Artificiales , Células Receptoras Sensoriales/fisiología , Tacto/fisiología , Técnicas Biosensibles/instrumentación , Humanos , Aprendizaje/fisiología , Memoria/fisiología , Células de Merkel , Neuritas , Sinapsis/fisiología , Percepción del Tacto , Transistores Electrónicos
18.
Biosens Bioelectron ; 156: 112133, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32174559

RESUMEN

Conformable, wearable biosensor-integrated systems are a promising approach to non-invasive and quantitative on-body detection of biomarkers in body fluids. However, realizing such a system has been slowed by the difficulty of fabricating a soft affinity-based biosensor patch capable of precise on-body fluid handling with minimal wearer intervention and a simple measurement protocol. Herein, we demonstrate a conformable, wearable lab-on-a-patch (LOP) platform composed of a stretchable, label-free, impedimetric biosensor and a stretchable microfluidic device for on-body detection of the hormone biomarker, cortisol. The all-in-one, stretchable microfluidic device can precisely collect and deliver sweat for cortisol quantitation and offers one-touch operation of reagent delivery for simultaneous electrochemical signal generation and washing. Three-dimensional nanostructuring of the Au working electrode enables the high sensitivity required to detect the pM-levels of cortisol in sweat. Our integrated LOP detected sweat cortisol quantitatively and accurately during exercise. This LOP will open a new horizon for non-invasive, highly sensitive, and quantitative on-body immunodetection for wearable personal diagnostics.


Asunto(s)
Técnicas Biosensibles/instrumentación , Dispositivos Laboratorio en un Chip , Nanoestructuras/química , Sudor/química , Dispositivos Electrónicos Vestibles , Biomarcadores/análisis , Elasticidad , Electrodos , Diseño de Equipo , Humanos , Hidrocortisona/análisis , Inmunoensayo/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación
19.
Chem Soc Rev ; 49(6): 1812-1866, 2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32100760

RESUMEN

The rapid growth of research in the areas of chemical and biochemical sensors, lab-on-a-chip, mobile technology, and wearable electronics offers an unprecedented opportunity in the development of mobile and wearable point-of-care testing (POCT) systems for self-testing. Successful implementation of such POCT technologies leads to minimal user intervention during operation to reduce user errors; user-friendly, easy-to-use and simple detection platforms; high diagnostic sensitivity and specificity; immediate clinical assessment; and low manufacturing and consumables costs. In this review, we discuss recent developments in the field of highly integrated mobile and wearable POCT systems. In particular, aspects of sample handling platforms, recognition elements and sensing methods, and new materials for signal transducers and powering devices for integration into mobile or wearable POCT systems will be highlighted. We also summarize current challenges and future prospects for providing personal healthcare with sample-in result-out mobile and wearable POCT.


Asunto(s)
Dispositivos Laboratorio en un Chip , Sistemas de Atención de Punto , Dispositivos Electrónicos Vestibles , Electrónica , Humanos
20.
Biosens Bioelectron ; 152: 112007, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941616

RESUMEN

Rapid, sensitive and accurate point-of-care-testing (POCT) of bacterial load from a variety of samples can help prevent human infections caused by pathogenic bacteria and mitigate their spreading. However, there is an unmet demand for a POCT device that can detect extremely low concentrations of bacteria in raw samples. Herein, we introduce the 'count-on-a-cartridge' (COC) platform for quantitation of the food-borne pathogenic bacteria Staphylococcus aureus. The system comprised of magnetic concentrator, sensing cartridge and fluorescent image reader with a built-in counting algorithm facilitated fluorescent microscopic bacterial enumeration in user-convenient manner with high sensitivity and accuracy within a couple of hours. The analytical performance of this assay is comparable to that of a standard plate count. The COC assay shows a sensitivity of 92.9% and specificity of 100% performed according to global microbiological criteria for S. aureus which is acceptable below 100 CFU/g in the food matrix. This culture-independent, rapid, ultrasensitive and highly accurate COC assay has great potential for places where prompt bacteria surveillance is in high demand.


Asunto(s)
Carga Bacteriana/instrumentación , Microbiología de Alimentos , Imagen Óptica/instrumentación , Staphylococcus aureus/aislamiento & purificación , Carga Bacteriana/economía , Técnicas Biosensibles/economía , Técnicas Biosensibles/instrumentación , Diseño de Equipo , Enfermedades Transmitidas por los Alimentos/microbiología , Humanos , Imagen Óptica/economía , Infecciones Estafilocócicas/microbiología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...