Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38704098

RESUMEN

BACKGROUND: Aspirin-exacerbated respiratory disease (AERD) is a severe disease involving dysregulated type 2 inflammation. However, the role other inflammatory pathways play in AERD is poorly understood. OBJECTIVE: We sought to broadly define the inflammatory milieu of the upper respiratory tract in AERD and to determine the effects of IL-4Rα inhibition on mediators of nasal inflammation. METHODS: Twenty-two AERD patients treated with dupilumab for 3 months were followed over 3 visits and compared to 10 healthy controls. Nasal fluid was assessed for 45 cytokines and chemokines using Olink Target 48. Blood neutrophils and cultured human mast cells, monocytes/macrophages, and nasal fibroblasts were assessed for response to IL-4/13 stimulation in vitro. RESULTS: Of the nasal fluid cytokines measured, nearly one-third were higher in AERD patients compared to healthy controls, including IL-6 and the IL-6 family-related cytokine oncostatin M (OSM), both of which correlated with nasal albumin levels, a marker of epithelial barrier dysregulation. Dupilumab significantly decreased many nasal mediators, including OSM and IL-6. IL-4 stimulation induced OSM production from mast cells and macrophages, but not from neutrophils, and OSM and IL-13 stimulation induced IL-6 production from nasal fibroblasts. CONCLUSION: In addition to type 2 inflammation, innate and IL-6-related cytokines are also elevated in the respiratory tract in AERD. Both OSM and IL-6 are locally produced in nasal polyps and likely promote pathology by negatively affecting epithelial barrier function. IL-4Rα blockade, though seemingly directed at type 2 inflammation, also decreases mediators of innate inflammation and epithelial dysregulation, which may contribute to dupilumab's therapeutic efficacy in AERD.

2.
Scand Cardiovasc J ; 58(1): 2341696, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38616531

RESUMEN

Infected or mycotic aortic aneurysms (MAAs) are a rare type of aneurysms. Due to the high risk of rupture, MAAs are life-threatening conditions. Early diagnosis and treatment are necessary, yet MAAs are usually found coincidentally. We report 10 patients with MAAs in whom macroscopically, similar coined-sized lesions of the inner aortic wall were seen in all cases. When a coin-sized lesion in the inner aortic wall is seen during open surgical repair of an aortic aneurysm, the surgeon should consider an infectious cause. Microbiological tissue samples should be collected, and additional targeted antibiotic therapy should be started.


Asunto(s)
Aorta , Cirujanos , Humanos
4.
medRxiv ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38464255

RESUMEN

Introduction: Autoimmune diseases are heterogeneous and often lack specific or sensitive diagnostic tests. Increased percentages of CD4+CXCR5+PD1+ circulating T follicular helper (cTfh) cells and skewed distributions of cTfh subtypes have been associated with autoimmunity. However, cTfh cell percentages can normalize with immunomodulatory treatment despite persistent disease activity, indicating the need for identifying additional cellular and/or serologic features correlating with autoimmunity. Methods: The cohort included 50 controls and 56 patients with autoimmune cytopenias, gastrointestinal, pulmonary, and/or neurologic autoimmune disease. Flow cytometry was used to measure CD4+CXCR5+ T cell subsets expressing the chemokine receptors CXCR3 and/or CCR6: CXCR3+CCR6- Type 1, CXCR3-CCR6- Type 2, CXCR3+CCR6+ Type 1/17, and CXCR3- CCR6+ Type 17 T cells. IgG and IgA autoantibodies were quantified using a microarray featuring 1616 full-length, conformationally intact protein antigens. The 97.5th percentile in the control cohort defined normal limits for T cell subset percentages and total number (burden) of autoantibodies. Results: This study focused on CD4+CXCR5+ T cells because CXCR5 upregulation occurs after cognate T-B cell interactions characteristic of autoimmune diseases. We refer to these cells as circulating T follicular memory (cTfm) cells to acknowledge the dynamic nature of antigen-experienced CXCR5+ T cells, which encompass progenitors of cTfh or Tfh cells as well as early effector memory T cells that have not yet lost CXCR5. Compared to controls, 57.1% of patients had increased CXCR5+CXCR3+CCR6+ cTfm1/17 and 25% had increased CXCR5+CXCR3-CCR6+ cTfm17 cell percentages. Patients had significantly more diverse IgG and IgA autoantibodies than controls and 44.6% had an increased burden of autoantibodies of either isotype. Unsupervised autoantibody clustering identified three clusters of patients with IgG autoantibody profiles distinct from those of controls, enriched for patients with active autoimmunity and monogenic diseases. An increased percentage of cTfm17 cells was most closely associated with an increased burden of high-titer IgG and IgA autoantibodies. A composite measure integrating increased cTfm1/17, cTfm17, and high-titer IgG and/or IgA autoantibodies had 91.1% sensitivity and 90.9% specificity for identifying patients with autoimmunity. Percentages of cTfm1/17 and cTfm17 percentages and numbers of high-titer autoantibodies in patients receiving immunomodulatory treatment did not differ from those in untreated patients, thus suggesting that measurements of cTfm can complement measurements of other cellular markers affected by treatment. Conclusions: This study highlights two new approaches for assessing autoimmunity: measuring CD4+CXCR5+ cTfm subsets as well as total burden of autoantibodies. Our findings suggest that these approaches are particularly relevant to patients with rare autoimmune disorders for whom target antigens and prognosis are often unknown.

5.
Arthritis Rheumatol ; 76(2): 285-292, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37610270

RESUMEN

OBJECTIVE: Kawasaki disease (KD) is a systemic vasculitis of young children that can lead to development of coronary artery aneurysms. We aimed to identify diagnostic markers to distinguish KD from other pediatric inflammatory diseases. METHODS: We used the proximity extension assay to profile proinflammatory mediators in plasma samples from healthy pediatric controls (n = 30), febrile controls (n = 26), and patients with KD (n = 23), multisystem inflammatory syndrome in children (MIS-C; n = 25), macrophage activation syndrome (n = 13), systemic and nonsystemic juvenile idiopathic arthritis (n = 14 and n = 10, respectively), and juvenile dermatomyositis (n = 9). We validated the key findings using serum samples from additional patients with KD (n = 37) and febrile controls (n = 28). RESULTS: High-fidelity proteomic profiling revealed distinct patterns of cytokine and chemokine expression across pediatric inflammatory diseases. Although KD and MIS-C exhibited many similarities, KD differed from MIS-C and other febrile diseases in that most patients exhibited elevation in one or more members of the interleukin-17 (IL-17) cytokine family, IL-17A, IL-17C, and IL-17F. IL-17A was particularly sensitive and specific, discriminating KD from febrile controls with an area under the receiver operator characteristic curve of 0.95 (95% confidence interval 0.89-1.00) in the derivation set and 0.91 (0.85-0.98) in the validation set. Elevation of all three IL-17-family cytokines was observed in over 50% of KD patients, including 19 of 20 with coronary artery aneurysms, but was rare in all other comparator groups. CONCLUSION: Elevation of IL-17 family cytokines is a hallmark of KD and may help distinguish KD from its clinical mimics.


Asunto(s)
COVID-19/complicaciones , Aneurisma Coronario , Síndrome Mucocutáneo Linfonodular , Síndrome de Respuesta Inflamatoria Sistémica , Niño , Humanos , Preescolar , Interleucina-17 , Citocinas , Síndrome Mucocutáneo Linfonodular/diagnóstico , Proteómica , Fiebre
7.
J Autoimmun ; 140: 103119, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37797401

RESUMEN

We aimed to characterize the genetic basis of disease in a family with multiple autoimmune manifestations, including systemic lupus erythematosus (SLE), immune thrombocytopenia, and autoimmune thyroiditis. Whole exome sequencing (WES) was conducted to identify candidate variants, which were analyzed by flow cytometry, immunoblotting, immunoprecipitation, and luciferase reporter assay in transfected 293T cells. Gene expression in peripheral blood mononuclear cells (PBMC) was profiled by bulk RNA sequencing and plasma cytokines were measured by proximity extension assay. In two siblings with early-onset SLE and immune thrombocytopenia, WES identified two maternally inherited in cis variants (p. Pro50Leu and p.Ala76Gly) in Suppressor of cytokine signaling 1 (SOCS1), flanking the kinase inhibitory domain that interacts with Janus kinases (JAK). Both variants were predicted to be benign by most in silico algorithms and neither alone affected the ability of SOCS1 to inhibit JAK-STAT1 signaling by functional studies. When both variants were expressed in cis, the mutant SOCS1 protein displayed decreased binding to JAK1 and reduced capacity to inhibit type I interferon (IFN-I) signaling by ∼20-30% compared to the wildtype protein. PBMC from the probands and their mother showed increased expression of interferon-inducible genes compared to healthy controls, supporting defective regulation of IFN-I signaling. Cells from all three subjects displayed heightened sensitivity to IFN-I stimulation, while response to IFN-γ, IL-4, and IL-6 was comparable to healthy controls. Our work illustrates the critical fine-tuning of IFN-I signaling by SOCS1 to prevent autoimmunity. We show that a combination of genetic variants that are individually benign may have deleterious consequences.

8.
Rheum Dis Clin North Am ; 49(4): 757-772, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821194

RESUMEN

Suppressor of cytokine signaling 1 (SOCS1) is a negative regulator of cytokine signaling that inhibits the activation of Janus kinases. A human disease caused by SOCS1 haploinsufficiency was first identified in 2020. To date, 18 cases of SOCS1 haploinsufficiency have been described. These patients experience enhanced activation of leukocytes and multiorgan system immunodysregulation, with immune-mediated cytopenia as the most common feature. In this review, the authors provide an overview on the biology of SOCS1 and summarize their knowledge of SOCS1 haploinsufficiency including genetics and clinical manifestations. They discuss the available treatment experience and outline an approach for the evaluation of suspected cases.


Asunto(s)
Autoinmunidad , Haploinsuficiencia , Humanos , Autoinmunidad/genética , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas , Citocinas/metabolismo
9.
J Clin Invest ; 133(22)2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37751296

RESUMEN

BACKGROUNDMacrophage activation syndrome (MAS) is a life-threatening complication of Still's disease (SD) characterized by overt immune cell activation and cytokine storm. We aimed to further understand the immunologic landscape of SD and MAS.METHODWe profiled PBMCs from people in a healthy control group and patients with SD with or without MAS using bulk RNA-Seq and single-cell RNA-Seq (scRNA-Seq). We validated and expanded the findings by mass cytometry, flow cytometry, and in vitro studies.RESULTSBulk RNA-Seq of PBMCs from patients with SD-associated MAS revealed strong expression of genes associated with type I interferon (IFN-I) signaling and cell proliferation, in addition to the expected IFN-γ signal, compared with people in the healthy control group and patients with SD without MAS. scRNA-Seq analysis of more than 65,000 total PBMCs confirmed IFN-I and IFN-γ signatures and localized the cell proliferation signature to cycling CD38+HLA-DR+ cells within CD4+ T cell, CD8+ T cell, and NK cell populations. CD38+HLA-DR+ lymphocytes exhibited prominent IFN-γ production, glycolysis, and mTOR signaling. Cell-cell interaction modeling suggested a network linking CD38+HLA-DR+ lymphocytes with monocytes through IFN-γ signaling. Notably, the expansion of CD38+HLA-DR+ lymphocytes in MAS was greater than in other systemic inflammatory conditions in children. In vitro stimulation of PBMCs demonstrated that IFN-I and IL-15 - both elevated in MAS patients - synergistically augmented the generation of CD38+HLA-DR+ lymphocytes, while Janus kinase inhibition mitigated this response.CONCLUSIONMAS associated with SD is characterized by overproduction of IFN-I, which may act in synergy with IL-15 to generate CD38+HLA-DR+ cycling lymphocytes that produce IFN-γ.


Asunto(s)
Interferón Tipo I , Síndrome de Activación Macrofágica , Niño , Humanos , Interleucina-15 , Síndrome de Activación Macrofágica/genética , Antígenos HLA-DR , Linfocitos T CD8-positivos , Anticuerpos , Interferón Tipo I/genética
10.
ACR Open Rheumatol ; 5(10): 556-562, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37688362

RESUMEN

OBJECTIVE: Lung disease (LD) is an increasingly recognized complication of systemic juvenile idiopathic arthritis (sJIA). As there are no currently available guidelines for pulmonary screening in sJIA, we sought to develop such an algorithm at our institution. METHODS: A multidisciplinary workgroup was convened, including members representing rheumatology, pulmonary, stem cell transplantation, and patient families. The workgroup leaders drafted an initial algorithm based on published literature and experience at our center. A modified Delphi approach was used to achieve agreement through three rounds of anonymous, asynchronous voting and a consensus meeting. Statements approved by the workgroup were rated as appropriate with moderate or high levels of consensus. These statements were organized into the final approved screening algorithm for LD in sJIA. RESULTS: The workgroup ultimately rated 20 statements as appropriate with a moderate or high level of consensus. The approved algorithm recommends pulmonary screening for newly diagnosed patients with sJIA with clinical features that the workgroup agreed may confer increased risk for LD. These "red flag features" include baseline characteristics (young age of sJIA onset, human leukocyte antigen type, trisomy 21), high disease activity (macrophage activation syndrome [MAS], sJIA-related ICU admission, elevated MAS biomarkers), respiratory symptoms or abnormal pulmonary examination findings, and features of drug hypersensitivity-like reactions (eosinophilia, atypical rash, anaphylaxis). The workgroup achieved consensus on the recommended pulmonary work-up and monitoring guidelines. CONCLUSION: We developed a pulmonary screening algorithm for sJIA-LD through a multidisciplinary consensus-building process, which will be revised as our understanding of sJIA-LD continues to evolve.

11.
Front Immunol ; 14: 1171318, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37583695

RESUMEN

Background: Dysregulation of cell death and defective clearance of dying cells are closely related to the pathogenesis of lupus nephritis (LN). However, the contribution of a recently discovered form of programmed cell death (PCD) called ferroptosis to LN has not been explored in detail. The purpose of this study was to investigate the role of ferroptosis and its associated metabolic pathways in the pathogenesis of LN. Methods: The composite gene expression scores were calculated by averaging the z-scored transformed log2 expressed genes within each form of PCD and pathway. Immunohistochemistry and immunofluorescence assays were used to verify the bioinformatics results. Results: We determined that ferroptosis is prominently and specifically elevated in the glomerular compartment of LN patients compared to other forms of PCD and kidney disease. This finding was then verified by immunohistochemical staining of 4-HNE (a key indicator for ferroptosis) expression in our own cohort (P < 0.0001). Intercorrelation networks were observed between 4-HNE and blood urea nitrogen, SLE disease activity index, serum creatinine, and complement 4, and negatively correlated with glomerular filtration rate in our own LN cohort (P < 0.05). Furthermore, enhanced iron metabolism and reduced fatty acid synthesis may be the most important factors for ferroptosis within the glomerulus. Through analysis of a single cell sequencing dataset and verification of immunohistochemical and immunofluorescence staining, aberrantly activated lipid peroxidation in CD163+ macrophages and CD10+ PC+ (pyruvate carboxylase) epithelial cells indicated that they may be undergoing ferroptosis in the glomerular compartment. Conclusions: Two dysregulated genes, CD163 and PC, were identified and verified that were significantly associated with lipid peroxidation. Targeting ferroptosis in CD163+ macrophages and CD10+ PC+ epithelial cells may provide novel therapeutic approaches in LN.


Asunto(s)
Ferroptosis , Nefritis Lúpica , Humanos , Nefritis Lúpica/metabolismo , Macrófagos/metabolismo , Células Epiteliales/metabolismo
12.
Annu Rev Genet ; 57: 245-274, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-37562411

RESUMEN

Systemic autoinflammatory diseases (SAIDs) are a heterogeneous group of disorders caused by excess activation of the innate immune system in an antigen-independent manner. Starting with the discovery of the causal gene for familial Mediterranean fever, more than 50 monogenic SAIDs have been described. These discoveries, paired with advances in immunology and genomics, have allowed our understanding of these diseases to improve drastically in the last decade. The genetic causes of SAIDs are complex and include both germline and somatic pathogenic variants that affect various inflammatory signaling pathways. We provide an overview of the acquired SAIDs from a genetic perspective and summarize the clinical phenotypes and mechanism(s) of inflammation, aiming to provide a comprehensive understanding of the pathogenesis of autoinflammatory diseases.


Asunto(s)
Enfermedades Autoinflamatorias Hereditarias , Síndrome de Inmunodeficiencia Adquirida del Simio , Animales , Humanos , Inflamación/genética , Fenotipo , Genómica , Enfermedades Autoinflamatorias Hereditarias/genética
13.
World J Surg ; 47(11): 2743-2752, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37491402

RESUMEN

BACKGROUND: In recent years, the increase in antibiotics usage locally has led to a worrying emergence of multi-drug resistant organisms (MDRO), with the Malaysian prevalence rate of methicillin-resistant Staphylococcus aureus (MRSA) ranging from 17.2 to 28.1% between 1999 and 2017. A study has shown that 7% of all non-lactational breast abscesses are caused by MRSA. Although aspiration offers less morbidities compared to surgical drainage, about 20% of women infected by MRSA who initially underwent aspiration subsequently require surgical drainage. This study is conducted to determine the link between aetiology, antimicrobial resistance pattern and treatment modalities of breast abscesses. METHODS: Retrospective study of reviewing microbiology specimens of breast abscess patients treated at Universiti Malaya Medical Centre from 2015 to 2020. Data collected from microbiology database and electronic medical records were analysed using SPSS V21. RESULT: A total of 210 specimens from 153 patients were analysed. One-fifth (19.5%) of the specimens isolated were MDRO. Lactational associated infections had the largest proportion of MDR in comparison to non-lactational and secondary infections (38.5%, 21.7%, 25.7%, respectively; p = 0.23). Staphylococcus epidermidis recorded the highest number of MDR (n = 12) followed by S. aureus (n = 8). Adjusted by aetiological groups, the presence of MDRO is linked to failure of single aspirations (p = 0.554) and significantly doubled the risk of undergoing surgical drainage for resolution (p = 0.041). CONCLUSION: MDR in breast abscess should be recognised as an increasing healthcare burden due to a paradigm shift of MDRO and a rise of resistance cases among lactational associated infection that were vulnerable to undergo surgical incision and drainage for resolution.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Femenino , Staphylococcus aureus , Absceso/tratamiento farmacológico , Absceso/cirugía , Estudios Retrospectivos , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/epidemiología , Antibacterianos/uso terapéutico , Hospitales
14.
J Allergy Clin Immunol ; 152(5): 1292-1302, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37422272

RESUMEN

BACKGROUND: Phospholipase C (PLC) γ1 is a critical enzyme regulating nuclear factor-κB (NF-κB), extracellular signal-related kinase, mitogen-activated protein kinase, and nuclear factor of activated T cells signaling pathways, yet germline PLCG1 mutation in human disease has not been reported. OBJECTIVE: We aimed to investigate the molecular pathogenesis of a PLCG1 activating variant in a patient with immune dysregulation. METHODS: Whole exome sequencing was used to identify the patient's pathogenic variants. Bulk RNA sequencing, single-cell RNA sequencing, quantitative PCR, cytometry by time of flight, immunoblotting, flow cytometry, luciferase assay, IP-One ELISA, calcium flux assay, and cytokine measurements in patient PBMCs and T cells and COS-7 and Jurkat cell lines were used to define inflammatory signatures and assess the impact of the PLCG1 variant on protein function and immune signaling. RESULTS: We identified a novel and de novo heterozygous PLCG1 variant, p.S1021F, in a patient presenting with early-onset immune dysregulation disease. We demonstrated that the S1021F variant is a gain-of-function variant, leading to increased inositol-1,4,5-trisphosphate production, intracellular Ca2+ release, and increased phosphorylation of extracellular signal-related kinase, p65, and p38. The transcriptome and protein expression at the single-cell level revealed exacerbated inflammatory responses in the patient's T cells and monocytes. The PLCG1 activating variant resulted in enhanced NF-κB and type II interferon pathways in T cells, and hyperactivated NF-κB and type I interferon pathways in monocytes. Treatment with either PLCγ1 inhibitor or Janus kinase inhibitor reversed the upregulated gene expression profile in vitro. CONCLUSIONS: Our study highlights the critical role of PLCγ1 in maintaining immune homeostasis. We illustrate immune dysregulation as a consequence of PLCγ1 activation and provide insight into therapeutic targeting of PLCγ1.


Asunto(s)
Mutación con Ganancia de Función , FN-kappa B , Humanos , FN-kappa B/metabolismo , Transducción de Señal , Proteínas Quinasas Activadas por Mitógenos/genética , Fosforilación , Fosfolipasa C gamma/genética
15.
Immunity ; 56(7): 1485-1501.e7, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37315560

RESUMEN

The interleukin 1 (IL-1) pathway signals through IL-1 receptor type 1 (IL-1R1) and emerges as a central mediator for systemic inflammation. Aberrant IL-1 signaling leads to a range of autoinflammatory diseases. Here, we identified a de novo missense variant in IL-1R1 (p.Lys131Glu) in a patient with chronic recurrent multifocal osteomyelitis (CRMO). Patient PBMCs showed strong inflammatory signatures, particularly in monocytes and neutrophils. The p.Lys131Glu substitution affected a critical positively charged amino acid, which disrupted the binding of the antagonist ligand, IL-1Ra, but not IL-1α or IL-1ß. This resulted in unopposed IL-1 signaling. Mice with a homologous mutation exhibited similar hyperinflammation and greater susceptibility to collagen antibody-induced arthritis, accompanied with pathological osteoclastogenesis. Leveraging the biology of the mutation, we designed an IL-1 therapeutic, which traps IL-1ß and IL-1α, but not IL-1Ra. Collectively, this work provides molecular insights and a potential drug for improved potency and specificity in treating IL-1-driven diseases.


Asunto(s)
Osteomielitis , Receptores de Interleucina-1 , Ratones , Animales , Receptores de Interleucina-1/genética , Osteomielitis/tratamiento farmacológico , Osteomielitis/genética , Osteomielitis/patología , Inflamación/genética , Inflamación/patología , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Proteína Antagonista del Receptor de Interleucina 1/genética , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Transducción de Señal , Mutación
16.
J Allergy Clin Immunol ; 152(3): 771-782, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37150360

RESUMEN

BACKGROUND: Deficiency of adenosine deaminase 2 (DADA2) results in heterogeneous manifestations including systemic vasculitis and red cell aplasia. The basis of different disease phenotypes remains incompletely defined. OBJECTIVE: We sought to further delineate disease phenotypes in DADA2 and define the mechanistic basis of ADA2 variants. METHODS: We analyzed the clinical features and ADA2 variants in 33 patients with DADA2. We compared the transcriptomic profile of 14 patients by bulk RNA sequencing. ADA2 variants were expressed experimentally to determine impact on protein production, trafficking, release, and enzymatic function. RESULTS: Transcriptomic analysis of PBMCs from DADA2 patients with the vasculitis phenotype or pure red cell aplasia phenotype exhibited similar upregulation of TNF, type I interferon, and type II interferon signaling pathways compared with healthy controls. These pathways were also activated in 3 asymptomatic individuals with DADA2. Analysis of ADA2 variants, including 7 novel variants, showed different mechanisms of functional disruption including (1) unstable transcript leading to RNA degradation; (2) impairment of ADA2 secretion because of retention in the endoplasmic reticulum; (3) normal expression and secretion of ADA2 that lacks enzymatic function; and (4) disruption of the N-terminal signal peptide leading to cytoplasmic localization of unglycosylated protein. CONCLUSIONS: Transcriptomic signatures of inflammation are observed in patients with different disease phenotypes, including some asymptomatic individuals. Disease-associated ADA2 variants affect protein function by multiple mechanisms, which may contribute to the clinical heterogeneity of DADA2.


Asunto(s)
Adenosina Desaminasa , Vasculitis , Humanos , Adenosina Desaminasa/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Fenotipo , Mutación
17.
JAMA Netw Open ; 6(5): e2315894, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37256629

RESUMEN

Importance: Deficiency of adenosine deaminase 2 (DADA2) is a recessively inherited disease characterized by systemic vasculitis, early-onset stroke, bone marrow failure, and/or immunodeficiency affecting both children and adults. DADA2 is among the more common monogenic autoinflammatory diseases, with an estimate of more than 35 000 cases worldwide, but currently, there are no guidelines for diagnostic evaluation or management. Objective: To review the available evidence and develop multidisciplinary consensus statements for the evaluation and management of DADA2. Evidence Review: The DADA2 Consensus Committee developed research questions based on data collected from the International Meetings on DADA2 organized by the DADA2 Foundation in 2016, 2018, and 2020. A comprehensive literature review was performed for articles published prior to 2022. Thirty-two consensus statements were generated using a modified Delphi process, and evidence was graded using the Oxford Center for Evidence-Based Medicine Levels of Evidence. Findings: The DADA2 Consensus Committee, comprising 3 patient representatives and 35 international experts from 18 countries, developed consensus statements for (1) diagnostic testing, (2) screening, (3) clinical and laboratory evaluation, and (4) management of DADA2 based on disease phenotype. Additional consensus statements related to the evaluation and treatment of individuals with DADA2 who are presymptomatic and carriers were generated. Areas with insufficient evidence were identified, and questions for future research were outlined. Conclusions and Relevance: DADA2 is a potentially fatal disease that requires early diagnosis and treatment. By summarizing key evidence and expert opinions, these consensus statements provide a framework to facilitate diagnostic evaluation and management of DADA2.


Asunto(s)
Adenosina Desaminasa , Péptidos y Proteínas de Señalización Intercelular , Adenosina Desaminasa/genética , Fenotipo , Heterocigoto
18.
J Immunol ; 210(8): 1015-1024, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-37011407

RESUMEN

Cytokine storm syndromes (CSSs) are potentially fatal hyperinflammatory states that share the underpinnings of persistent immune cell activation and uninhibited cytokine production. CSSs can be genetically determined by inborn errors of immunity (i.e., familial hemophagocytic lymphohistiocytosis) or develop as a complication of infections, chronic inflammatory diseases (e.g., Still disease), or malignancies (e.g., T cell lymphoma). Therapeutic interventions that activate the immune system such as chimeric Ag receptor T cell therapy and immune checkpoint inhibition can also trigger CSSs in the setting of cancer treatment. In this review, the biology of different types of CSSs is explored, and the current knowledge on the involvement of immune pathways and the contribution of host genetics is discussed. The use of animal models to study CSSs is reviewed, and their relevance for human diseases is discussed. Lastly, treatment approaches for CSSs are discussed with a focus on interventions that target immune cells and cytokines.


Asunto(s)
Artritis Juvenil , Linfohistiocitosis Hemofagocítica , Neoplasias , Animales , Humanos , Síndrome de Liberación de Citoquinas/complicaciones , Citocinas
19.
Arthritis Care Res (Hoboken) ; 75(10): 2063-2072, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37038961

RESUMEN

OBJECTIVE: Although interleukin-1 (IL-1)/IL-6 inhibitors are effective therapies for systemic juvenile idiopathic arthritis (JIA), some patients develop eosinophilia and lung disease during treatment. This study was undertaken to retrospectively evaluate incidence and risk factors for eosinophilia and describe lung disease outcomes in IL-1/IL-6 inhibitor-exposed patients with systemic JIA. METHODS: Among JIA patients at our institution exposed to interleukin-1 (IL-1)/IL-6 inhibitors (1995-2022), we compared incidence rate of eosinophilia in systemic JIA compared to other JIA, stratified by medication class (IL-1/IL-6 inhibitors, other cytokine inhibitors, methotrexate). We used Cox models to identify predictors of eosinophilia during IL-1/IL-6 inhibitor use and summarized treatment changes and outcomes after eosinophilia, including lung disease. HLA typing was performed on a clinical or research basis. RESULTS: There were 264 new medication exposures in 75 patients with systemic JIA and 41 patients with other JIA. A total of 49% of patients with systemic JIA with HLA typing (n = 45) were positive for HLA-DRB1*15 alleles. Eosinophilia was common during IL-1/IL-6 inhibitor use and did not differ by systemic JIA compared to other JIA (0.08 and 0.07 per person-year, respectively; P = 0.30). Among systemic JIA patients, pretreatment macrophage activation syndrome (MAS) was associated with a higher rate of subsequent eosinophilia on biologic therapy (unadjusted hazard ratio 3.2 [95% confidence interval 1.2-8.3]). A total of 4 of 5 patients who switched therapy within 10 weeks of eosinophilia experienced disease flare compared to none of the patients who continued the original therapy. A total of 8 of 25 patients with pulmonary evaluations had lung disease, and all had severe manifestations of systemic JIA (MAS, intensive care unit stay). One death was attributed to systemic JIA-lung disease. CONCLUSION: Eosinophilia is common in JIA patients using IL-1/IL-6 inhibitors. Severe disease may be associated with eosinophilia and lung disease in systemic JIA.


Asunto(s)
Artritis Juvenil , Productos Biológicos , Eosinofilia , Enfermedades Pulmonares , Humanos , Niño , Artritis Juvenil/diagnóstico , Artritis Juvenil/tratamiento farmacológico , Artritis Juvenil/epidemiología , Incidencia , Estudios Retrospectivos , Inhibidores de la Interleucina-6 , Eosinofilia/inducido químicamente , Eosinofilia/diagnóstico , Eosinofilia/epidemiología , Factores de Riesgo , Interleucina-1 , Productos Biológicos/uso terapéutico
20.
Comput Struct Biotechnol J ; 21: 1785-1796, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36915382

RESUMEN

Zearalenone (ZEA), a secondary metabolite of Fusarium fungi found in cereal-based foods, promotes the growth of colon, breast, and prostate cancer cells in vitro. However, the lack of animal studies hinders a deeper mechanistic understanding of the cancer-promoting effects of ZEA. This study aimed to determine the effect of ZEA on colon cancer progression and its underlying mechanisms. Through integrative analyses of transcriptomics, metabolomics, metagenomics, and host phenotypes, we investigated the impact of a 4-week ZEA intervention on colorectal cancer in xenograft mice. Our results showed a twofold increase in tumor weight with the 4-week ZEA intervention. ZEA exposure significantly increased the mRNA and protein levels of BEST4, DGKB, and Ki67 and the phosphorylation levels of ERK1/2 and AKT. Serum metabolomic analysis revealed that the levels of amino acids, including histidine, arginine, citrulline, and glycine, decreased significantly in the ZEA group. Furthermore, ZEA lowered the alpha diversity of the gut microbiota and reduced the abundance of nine genera, including Tuzzerella and Rikenella. Further association analysis indicated that Tuzzerella was negatively associated with the expression of BEST4 and DGKB genes, serum uric acid levels, and tumor weight. Additionally, circulatory hippuric acid levels positively correlated with tumor weight and the expression of oncogenic genes, including ROBO3, JAK3, and BEST4. Altogether, our results indicated that ZEA promotes colon cancer progression by enhancing the BEST4/AKT/ERK1/2 pathway, lowering circulatory amino acid concentrations, altering gut microbiota composition, and suppressing short chain fatty acids production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...