Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3459, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658566

RESUMEN

Establishing dependable, cost-effective electrical connections is vital for enhancing device performance and shrinking electronic circuits. MXenes, combining excellent electrical conductivity, high breakdown voltage, solution processability, and two-dimensional morphology, are promising candidates for contacts in microelectronics. However, their hydrophilic surfaces, which enable spontaneous environmental degradation and poor dispersion stability in organic solvents, have restricted certain electronic applications. Herein, electrohydrodynamic printing technique is used to fabricate fully solution-processed thin-film transistors with alkylated 3,4-dihydroxy-L-phenylalanine functionalized Ti3C2Tx (AD-MXene) as source, drain, and gate electrodes. The AD-MXene has excellent dispersion stability in ethanol, which is required for electrohydrodynamic printing, and maintains high electrical conductivity. It outperformed conventional vacuum-deposited Au and Al electrodes, providing thin-film transistors with good environmental stability due to its hydrophobicity. Further, thin-film transistors are integrated into logic gates and one-transistor-one-memory cells. This work, unveiling the ligand-functionalized MXenes' potential in printed electrical contacts, promotes environmentally robust MXene-based electronics (MXetronics).

2.
ACS Appl Mater Interfaces ; 16(17): 21367-21382, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38631339

RESUMEN

Recent advances in paper-based microsupercapacitors (p-MSCs) have attracted significant attention due to their potential as substrates for flexible electronics. This review summarizes progress in the field of p-MSCs, discussing their challenges and prospects. It covers various aspects, including the fundamental characteristics of paper, the modification of paper with functional materials, and different methods for device fabrication. The review critically analyzes recent advancements, materials, and fabrication techniques for p-MSCs, exploring their potential applications and benefits, such as flexibility, cost-effectiveness, and sustainability. Additionally, this review highlights gaps in current research, guiding future investigations and innovations in the field. It provides an overview of the current state of p-MSCs and offers valuable insights for researchers and professionals in the field. The critical analysis and discussion presented herein offer a roadmap for the future development of p-MSCs and their potential impact on the domain of flexible electronics.

3.
Nanomicro Lett ; 16(1): 138, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38421464

RESUMEN

Zinc-air batteries (ZABs) are gaining attention as an ideal option for various applications requiring high-capacity batteries, such as portable electronics, electric vehicles, and renewable energy storage. ZABs offer advantages such as low environmental impact, enhanced safety compared to Li-ion batteries, and cost-effectiveness due to the abundance of zinc. However, early research faced challenges due to parasitic reactions at the zinc anode and slow oxygen redox kinetics. Recent advancements in restructuring the anode, utilizing alternative electrolytes, and developing bifunctional oxygen catalysts have significantly improved ZABs. Scientists have achieved battery reversibility over thousands of cycles, introduced new electrolytes, and achieved energy efficiency records surpassing 70%. Despite these achievements, there are challenges related to lower power density, shorter lifespan, and air electrode corrosion leading to performance degradation. This review paper discusses different battery configurations, and reaction mechanisms for electrically and mechanically rechargeable ZABs, and proposes remedies to enhance overall battery performance. The paper also explores recent advancements, applications, and the future prospects of electrically/mechanically rechargeable ZABs.

4.
RSC Adv ; 14(2): 1284-1303, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38174250

RESUMEN

Graphene, the most fascinating 2D form of carbon with closely packed carbon atoms arranged in a layer, needs more attention in various fields. For its unique electrical, mechanical, and chemical properties with a large surface area, graphene has been in the limelight since its first report. Graphene has extraordinary properties, making it the most promising electrode component for applications in supercapacitors. However, the persistent re-stacking of carbon layers in graphene, caused by firm interlayer van der Waals attractions, significantly impairs the performance of supercapacitors. As a result, many strategies have been used to get around the aforementioned problems. The utilization of graphene-based nanomaterials has been implemented to surmount the aforementioned constraints and considerably enhance the performance of supercapacitors. This review highlights recent progress in graphene-based nanomaterials with metal oxide, sulfides, phosphides, nitrides, carbides, and conducting polymers, focusing on their synthetic approach, configurations, and electrochemical properties for supercapacitors. It discusses new possibilities that could increase the performance of next-generation supercapacitors.

5.
ACS Omega ; 9(1): 294-303, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222635

RESUMEN

In this study, to improve the electrical properties and impact strength of phenolic formaldehyde (PF) resin, PF-based composites were prepared by mixing graphene and the ionic liquid 3-decyl-bis(1-vinyl-1H-imidazole-3-ium-bromide) (C10[VImBr]2) via hot blending and compression-curing processes. The graphene surface was modified using a silane coupling agent. The synergistic effect of graphene and C10[VImBr]2 on the electrical properties, electromagnetic shielding efficiency, thermal stability, impact strength, and morphology of PF/graphene and PF/graphene/C10[VImBr]2 composites was then investigated. It was found that the electrical conductivity of the composites significantly increased from 2.3 × 10-10 to 4.14 × 10-3 S/m with an increase in the graphene content from 0 to 15 wt %, increasing further to 0.145 S/m with the addition of 5 wt % C10[VImBr]2. The electromagnetic shielding efficiency of the composite increased from 4.70 to 28.64 dB with the addition of 15 wt % graphene, while the impact strength of the composites rose significantly from 0.59 to 1.13 kJ/m2 with an increase in the graphene content from 0 to 15 wt %, reaching 1.53 kJ/m2 with the addition of 5 wt % C10[VImBr]2. Scanning electron microscopy images of the PF/GNP/C10[VImBr]2 composites revealed a rough morphology with numerous microcracks.

6.
Medicine (Baltimore) ; 102(47): e36274, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38013319

RESUMEN

RATIONALE: Pulmonary cryptococcal infections occur mainly in immunocompromised individuals, such as those with malignancies. Preoperative diagnosis of pulmonary cryptococcosis (PC) can be challenging for both clinicians and radiologists because of nonspecific clinical manifestations and variable radiologic features, as it is easily misdiagnosed as metastatic lung cancer. PATIENT CONCERNS: In case 1, a 76-year-old woman with a history of cervical cancer presented with lung nodules detected on chest computed tomography (CT) 13 months after completing concurrent chemoradiotherapy. In case 2, a 56-year-old woman with a history of ovarian cancer presented with pulmonary nodules on chest CT 19 months after completing chemotherapy. Both patients were clinically asymptomatic, and tumor markers were not elevated. DIAGNOSES: In case 1, chest CT revealed multiple enhanced nodules with lobulated margins in the left lower lobe, and positron emission tomography (PET)-CT showed uptake in the nodule with a standardized uptake value of 3.7. In case 2, chest CT revealed several nodules in the right upper lobe abutting the right major fissure, and PET-CT revealed fluorodeoxyglucose uptake in the nodules. Pathology revealed granulomatous inflammation with cryptococcal infection, and mucicarmine and periodic acid-Schiff staining confirmed cryptococcal infection in both cases. INTERVENTIONS: Presumptive diagnoses of lung metastases were made in both cases and thoracoscopic lobectomy was performed. Postoperatively, the patients received antifungal therapy with fluconazole. OUTCOMES: PC was differentially diagnosed and effectively managed. The patients remained disease-free for both PC and gynecological cancers during subsequent follow-ups. LESSONS: Recognition that PC can mimic lung metastasis is important for managing gynecological cancers. PC should be considered in the differential diagnosis when single or multiple nodules are detected on chest radiography without elevation of tumor markers in patients with gynecological cancer.


Asunto(s)
Criptococosis , Neoplasias de los Genitales Femeninos , Neoplasias Pulmonares , Nódulos Pulmonares Múltiples , Neumonía , Humanos , Femenino , Anciano , Persona de Mediana Edad , Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias Pulmonares/patología , Criptococosis/tratamiento farmacológico , Neoplasias de los Genitales Femeninos/diagnóstico , Biomarcadores de Tumor
7.
ACS Energy Lett ; 8(10): 4488-4495, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37854043

RESUMEN

Recently, halide perovskites have been widely explored for high-efficiency photocatalysis or photoelectrochemical (PEC) cells. Here, in order to make an efficient photoanode electrode for the degradation of pollutants, concretely 2-mercaptobenzothiazole (MBT), nanoscale cesium lead bromide (CsPbBr3) perovskite was directly formed on the surface of mesoporous titanium dioxide (meso-TiO2) film using a two-step spin-coating process. This photoelectrode recorded a photocurrent of up to 3.02 ± 0.03 mA/cm2 under standard AM 1.5G (100 mW/cm2) illumination through an optimization process such as introducing a thin aluminum oxide (Al2O3) coating layer. Furthermore, to supply high voltage for efficient oxidation of MBT without an external bias, we developed a new photovoltaic/PEC tandem system using a methylammonium lead iodide (MAPbI3) based mini-module consisting of three solar cells interconnected in series and confirmed its successful operation. This approach looks very promising due to its applicability to various PEC reactions.

8.
Chemosphere ; 345: 140479, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37863208

RESUMEN

Photogenerated charge carriers can undergo rapid recombination in conventional photocatalyst systems, reducing their photocatalytic efficiency. To address this bottleneck, a g-C3N4/BaTiO3 (CNB) heterojunction composite was decorated with different mass ratios of graphene oxide (GO) to form a novel visible-light responsive ternary GO-g-C3N4/BaTiO3 (GOCNB) nanocomposite using a facile fabrication method. The GOCNB photocatalyst exhibited significantly higher light absorption and greater charge transfer than CNB, g-C3N4, or BaTiO3. The photodegradation performance of GOCNB was optimized with a 2% mass loading of GO, and it achieved a degradation rate constant of 14.9 × 10-3 min-1 for rhodamine B with an efficiency of 94% within 180 min. The rate constant was 8-fold and 6-fold higher than that of bare BaTiO3 and CNB, respectively. The stronger photocatalytic activity was attributed to the synergistic effect of GO, g-C3N4, and BaTiO3, with g-C3N4 and BaTiO3 promoting charge transfer within a wider visible light range and GO promoting electron mobility and the photocatalyst's adsorption capacity. In particular, the proposed system maintained the spatial separation of photogenerated electron-hole pairs, which is vital for high photocatalytic activity. This study provides new insights into semiconductor-based photocatalytic systems and suggests a route for more environmentally sustainable technologies.


Asunto(s)
Luz , Nanocompuestos
9.
Adv Sci (Weinh) ; 10(32): e2303104, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37735148

RESUMEN

Stealth technology is used to enhance the survival of military equipment in the field of military surveillance, as it utilizes a combination of techniques to render itself undetectable by enemy radar systems. Radar absorbing materials (RAMs) are specialized materials used to reduce the reflection (or absorption) of radar signals to provide stealth capability, which is a core component of passive countermeasures in military applications. The properties of RAMs can be optimized by adjusting their composition, microstructure, and surface geometry. Carbon-based materials present a promising approach for the fabrication of ultrathin, versatile, and high-performance RAMs due to their large specific surface area, lightweight, excellent dielectric properties, high electrical conductivity, and stability under harsh conditions. This review begins with a brief history of stealth technology and an introduction to electromagnetic waves, radar systems, and radar absorbing materials. This is followed by a discussion of recent research progress in carbon-based RAMs, including carbon blacks, carbon fibers, carbon nanotubes, graphite, graphene, and MXene, along with an in-depth examination of the principles and strategies on electromagnetic attenuation characteristics. Hope this review will offer fresh perspectives on the design and fabrication of carbon-based RAMs, thereby fostering a deeper fundamental understanding and promoting practical applications.

10.
J Mech Behav Biomed Mater ; 147: 106103, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37690292

RESUMEN

The objective of this investigation was to design the selection and ranking of dental restorative composite materials using hybrid Entropy-VIKOR as the MCDM method. Eleven performance defining attributes (PDAs) of dental composites were considered to investigate the best formulation among the dental composites. The weight criteria of various PDAs of the dental composite were calculated by the Entropy method: PDA-1(0.0527), PDA-2 (0.0113), PDA-3(0.1692), PDA-4(0.1291), PDA-5(0.0207), etc. The VIKOR method was employed to demonstrate the rank of dental composites. As per the VIKOR method, the first rank was obtained by DHZ6, the second rank was by DHZ8, the third rank was by DHZ4, the fourth rank was by DHZ2, and the lowest rank was by DHZ0. The Hybrid Entropy-VIKOR method holds significance in the biomedical realm due to its capability to effectively address complex decision-making scenarios. Its ability to account for multiple criteria, uncertainties, and compromise solutions makes it particularly useful for enhancing decision-making processes in the biomedical field, where selecting the most suitable options is critical for patient outcomes and healthcare advancements.

11.
Nanomicro Lett ; 15(1): 123, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37160615

RESUMEN

With an excellent power conversion efficiency of 25.7%, closer to the Shockley-Queisser limit, perovskite solar cells (PSCs) have become a strong candidate for a next-generation energy harvester. However, the lack of stability and reliability in PSCs remained challenging for commercialization. Strategies, such as interfacial and structural engineering, have a more critical influence on enhanced performance. MXenes, two-dimensional materials, have emerged as promising materials in solar cell applications due to their metallic electrical conductivity, high carrier mobility, excellent optical transparency, wide tunable work function, and superior mechanical properties. Owing to different choices of transition elements and surface-terminating functional groups, MXenes possess the feature of tuning the work function, which is an essential metric for band energy alignment between the absorber layer and the charge transport layers for charge carrier extraction and collection in PSCs. Furthermore, adopting MXenes to their respective components helps reduce the interfacial recombination resistance and provides smooth charge transfer paths, leading to enhanced conductivity and operational stability of PSCs. This review paper aims to provide an overview of the applications of MXenes as components, classified according to their roles as additives (into the perovskite absorber layer, charge transport layers, and electrodes) and themselves alone or as interfacial layers, and their significant importance in PSCs in terms of device performance and stability. Lastly, we discuss the present research status and future directions toward its use in PSCs.

12.
Nanomaterials (Basel) ; 13(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36986007

RESUMEN

Activated carbon fibers (ACFs) as one of the most important porous carbon materials are widely used in many applications that involve rapid adsorption and low-pressure loss, including air purification, water treatment, and electrochemical applications. For designing such fibers for the adsorption bed in gas and aqueous phases, in-depth comprehension of the surface components is crucial. However, achieving reliable values remains a major challenge due to the high adsorption affinity of ACFs. To overcome this problem, we propose a novel approach to determine London dispersive components (γSL) of the surface free energy of ACFs by inverse gas chromatography (IGC) technique at an infinite dilution. Our data reveal the γSL values at 298 K for bare carbon fibers (CFs) and the ACFs to be 97 and 260-285 mJ·m-2, respectively, which lie in the regime of secondary bonding of physical adsorption. Our analysis indicates that these are impacted by micropores and defects on the carbon surfaces. Comparing the γSL obtained by the traditional Gray's method, our method is concluded as the most accurate and reliable value for the hydrophobic dispersive surface component of porous carbonaceous materials. As such, it could serve as a valuable tool in designing interface engineering in adsorption-related applications.

13.
Nanomaterials (Basel) ; 13(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36903696

RESUMEN

In recent years, porous carbon materials with high specific surface area and porosity have been developed to meet the commercial demands of supercapacitor applications. Carbon aerogels (CAs) with three-dimensional porous networks are promising materials for electrochemical energy storage applications. Physical activation using gaseous reagents provides controllable and eco-friendly processes due to homogeneous gas phase reaction and removal of unnecessary residue, whereas chemical activation produced wastes. In this work, we have prepared porous CAs activated by gaseous carbon dioxide, with efficient collisions between the carbon surface and the activating agent. Prepared CAs display botryoidal shapes resulting from aggregation of spherical carbon particles, whereas activated CAs (ACAs) display hollow space and irregular particles from activation reactions. ACAs have high specific surface areas (2503 m2 g-1) and large total pore volumes (1.604 cm3 g-1), which are key factors for achieving a high electrical double-layer capacitance. The present ACAs achieved a specific gravimetric capacitance of up to 89.1 F g-1 at a current density of 1 A g-1, along with a high capacitance retention of 93.2% after 3000 cycles.

14.
Chemosphere ; 323: 138210, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36828115

RESUMEN

Herein, we successfully prepared sustainable nanocomposites from agriculture waste (rice husk)-derived biochar precursor, and followed by nickel-doped, base-treated titanium dioxide nanomaterials loading for efficient lead (Pb2+) removal from aqueous media. By varying the loading contents of active materials, the optimized sample (Ni0.01@Na-TiO2/BC) possessed an efficient Pb2+ adsorption capability of 122.3 mg g-1 under the under optimum adsorption parameters, which is attributable to its specific surface area (138.09 m2 g-1) and excess functional sites. Kinetic and Isothermal examination illustrated that Pb2+ adsorption phenomena was well followed through pseudo 2nd order and Langmuir models. In addition, superior Pb2+ ions adsorption selectivity was recorded by optimized sample in a multi-metallic system over other existing ion (such as Cd2+, Mg2+, Ca2+, Cu2+, and Zn2+). Desorption experiments has been performed by using desorbing agent that demonstrates the good regeneration ability of sample. Hence, these findings provide new insight for the biowaste management by converting them into innovative adsorbents for commercial scale environmental remediation.


Asunto(s)
Nanocompuestos , Oryza , Contaminantes Químicos del Agua , Plomo , Iones , Agua , Contaminantes Químicos del Agua/análisis , Adsorción , Cinética , Concentración de Iones de Hidrógeno
15.
J Colloid Interface Sci ; 629(Pt B): 87-96, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36152583

RESUMEN

Photocatalytic technology is widely explored as a promising alternative for water treatments. However, low photocatalytic efficiency and selectivity usually limit its practical application. Herein, we develop the synthesis of two-dimensional zinc oxide (ZnO) nanosheets decorated with copper (Cu)-palladium (Pd) bimetallic nanoparticles (NPs) for the degradation of organic dyes in an aqueous solution. Compared to pristine ZnO nanosheets, the prepared CuPd/ZnO composites exhibited superior performance for the photocatalytic degradation of organic dyes under visible-light irradiation. The remarkable improvement of degradation activity was attributable to the enhanced separation and transfer efficiency of photogenerated charge carriers. The highest catalytic efficiency of CuPd/ZnO nanocomposite with the CuPd content of 0.5 wt% exhibited 95.3% removal of methyl orange (MO) (40 mg/L) within 45 min. From the experimental data, we believe this study provides a new avenue for the design and fabrication of high-performance photocatalysts capable of water treatments.

16.
Nanomaterials (Basel) ; 12(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36296898

RESUMEN

In recent years, the development of energy storage devices has received much attention due to the increasing demand for renewable energy. Supercapacitors (SCs) have attracted considerable attention among various energy storage devices due to their high specific capacity, high power density, long cycle life, economic efficiency, environmental friendliness, high safety, and fast charge/discharge rates. SCs are devices that can store large amounts of electrical energy and release it quickly, making them ideal for use in a wide range of applications. They are often used in conjunction with batteries to provide a power boost when needed and can also be used as a standalone power source. They can be used in various potential applications, such as portable equipment, smart electronic systems, electric vehicles, and grid energy storage systems. There are a variety of materials that have been studied for use as SC electrodes, each with its advantages and limitations. The electrode material must have a high surface area to volume ratio to enable high energy storage densities. Additionally, the electrode material must be highly conductive to enable efficient charge transfer. Over the past several years, several novel materials have been developed which can be used to improve the capacitance of the SCs. This article reviews three types of SCs: electrochemical double-layer capacitors (EDLCs), pseudocapacitors, and hybrid supercapacitors, their respective development, energy storage mechanisms, and the latest research progress in material preparation and modification. In addition, it proposes potentially feasible solutions to the problems encountered during the development of supercapacitors and looks forward to the future development direction of SCs.

17.
ACS Nano ; 16(9): 13370-13429, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36094932

RESUMEN

Photocatalytic water splitting, CO2 reduction, and pollutant degradation have emerged as promising strategies to remedy the existing environmental and energy crises. However, grafting of expensive and less abundant noble-metal cocatalysts on photocatalyst materials is a mandatory practice to achieve enhanced photocatalytic performance owing to the ability of the cocatalysts to extract electrons efficiently from the photocatalyst and enable rapid/enhanced catalytic reaction. Hence, developing highly efficient, inexpensive, and noble-metal-free cocatalysts composed of earth-abundant elements is considered as a noteworthy step toward considering photocatalysis as a more economical strategy. Recently, MXenes (two-dimensional (2D) transition-metal carbides, nitrides, and carbonitrides) have shown huge potential as alternatives for noble-metal cocatalysts. MXenes have several excellent properties, including atomically thin 2D morphology, metallic electrical conductivity, hydrophilic surface, and high specific surface area. In addition, they exhibit Gibbs free energy of intermediate H atom adsorption as close to zero and less than that of a commercial Pt-based cocatalyst, a Fermi level position above the H2 generation potential, and an excellent ability to capture and activate CO2 molecules. Therefore, there is a growing interest in MXene-based photocatalyst materials for various photocatalytic events. In this review, we focus on the recent advances in the synthesis of MXenes with 2D and 0D morphologies, the stability of MXenes, and MXene-based photocatalysts for H2 evolution, CO2 reduction, and pollutant degradation. The existing challenges and the possible future directions to enhance the photocatalytic performance of MXene-based photocatalysts are also discussed.

18.
Adv Mater ; 34(50): e2204380, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36103603

RESUMEN

Exceptional power conversion efficiency (PCE) of 25.7% in perovskite solar cells (PSCs) has been achieved, which is comparable with their traditional rivals (Si-based solar cells). However, commercialization-worthy efficiency and long-term stability remain a challenge. In this regard, there are increasing studies focusing on the interface engineering in PSC devices to overcome their poor technical readiness. Herein, the roles of electrode materials and interfaces in PSCs are discussed in terms of their PCEs and perovskite stability. All the current knowledge on the factors responsible for the rapid intrinsic and external degradation of PSCs is presented. Then, the roles of carbonaceous materials as substitutes for noble metals are focused on, along with the recent research progress in carbon-based PSCs. Furthermore, a sub-category of PSCs, that is, flexible PSCs, is considered as a type of exceptional power source due to their high power-to-weight ratios and figures of merit for next-generation wearable electronics. Last, the future perspectives and directions for research in PSCs are discussed, with an emphasis on their commercialization.

19.
Nanomicro Lett ; 14(1): 188, 2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36114884

RESUMEN

Epoxy-based nanocomposites can be ideal electromagnetic interference (EMI)-shielding materials owing to their lightness, chemical inertness, and mechanical durability. However, poor conductivity and brittleness of the epoxy resin are challenges for fast-growing portable and flexible EMI-shielding applications, such as smart wristband, medical cloth, aerospace, and military equipment. In this study, we explored hybrid nanofillers of single-walled carbon nanotubes (SWCNT)/reduced graphene oxide (rGO) as conductive inks and polyester fabrics (PFs) as a substrate for flexible EMI-shielding composites. The highest electrical conductivity and fracture toughness of the SWCNT/rGO/PF/epoxy composites were 30.2 S m-1 and 38.5 MPa m1/2, which are ~ 270 and 65% enhancement over those of the composites without SWCNTs, respectively. Excellent mechanical durability was demonstrated by stable electrical conductivity retention during 1000 cycles of bending test. An EMI-shielding effectiveness of ~ 41 dB in the X-band frequency of 8.2-12.4 GHz with a thickness of 0.6 mm was obtained with an EM absorption-dominant behavior over a 0.7 absorption coefficient. These results are attributed to the hierarchical architecture of the macroscale PF skeleton and nanoscale SWCNT/rGO networks, leading to superior EMI-shielding performance. We believe that this approach provides highly flexible and robust EMI-shielding composites for next-generation wearable electronic devices.

20.
ACS Appl Mater Interfaces ; 14(37): 42671-42682, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36043943

RESUMEN

Solid-state supercapacitors have shown extraordinary promise for flexible and wearable electronics. To date, they are still limited by relatively poor energy volumetric performances, which are largely determined by the pore structures and physicochemical properties of electrode materials. Moreover, the poor mechanical properties afforded because of the intrinsic shortcomings of electrode materials need to be resolved. Herein, we designed a flexible and solid-state yarn electrode with high porosity and high affinity toward electrolytes using poly(3,4-ethylenedioxythiophene) (PEDOT) and Korean heritage paper (KHP). To maximize the volumetric capacitive energy storage, PEDOT-loaded conductive KHP sheets (two-dimensional) were transformed into a biscrolled yarn (one-dimensional) via simple twisting. The volumetric capacitance of the biscrolled yarn supercapacitors with 1 mm cell diameter exhibited a volumetric specific capacitance of ∼6576 mF/cm3 at a scan rate of 25 mV/s, which is attributable to the high mass loading of PEDOT as a conductive support and increased packing density. Moreover, multiple optimized yarn supercapacitors can be connected to yield a total length of 1 m, demonstrating enormous potential as a portable and wearable power supply for operating smartwatches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...