Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 855: 158634, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36089025

RESUMEN

The diversification or decoupling of production chains from China to alternative Asian countries such as India or Indonesia would impact the spatial distribution of anthropogenic emissions, with corresponding economic impacts due to mortality associated with particulate matter exposure. We evaluated these changes using the Community Earth System Model, the Integrated Exposure-Response (IER) model and Willingness To Pay (WTP) method. Significant effects on PM2.5 related mortality and economic cost for these deaths were seen in many East, Southeast and South Asian countries, particularly those immediately downwind of these three countries. Transferring all of export-related manufacturing to Indonesia resulted in significant mortality decreases in China and South Korea by 78k (5 per 100k) and 1k (2 per 100k) respectively, while Indonesia's mortality significantly increased (73.7k; 29 per 100k), as well as India, Pakistan and Nepal. When production was transferred to India, mortality rates in East Asia show similar changes to the Indonesian scenario, while mortalities in India increased dramatically (87.9k; 6 per 100k), and mortalities in many neighbors of India were also severely increased. Nevertheless, the economic costs for PM2.5 related mortality were much smaller than national GDP changes in China (0.9 % of GDP vs. 18.3 % of GDP), India (2.7 % of GDP vs. 84.3 % of GDP) or Indonesia (9.4 % of GDP vs. 337 % of GDP) due to shifting all of export-related production lines from China to India or Indonesia. Morally, part of the benefits of economic activity should be used to compensate the neighboring communities where mortality increases occur.


Asunto(s)
Material Particulado , Indonesia , China , India , Pakistán
2.
Environ Pollut ; 254(Pt A): 112952, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31369913

RESUMEN

We have carried out a comprehensive analysis of six air pollutants (particles with an aerodynamic diameter less than 2.5 µm (PM2.5) and less than 10 µm (PM10), carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3)) in western China, including the spatiotemporal characteristics of air pollutants, their relationship with meteorological factors and emission sources, and the efficiency of emission control strategies for the region. Based hourly observations at 23 sites in western China from June 2016 to May 2017, concentrations of most pollutants were higher outside the Tibetan Plateau, lowest in summer and highest in winter, the exception being O3. This was partially because meteorological conditions in winter were found to the most unfavorable to pollutant dispersion and dilution than other seasons. Pollutant concentrations at most sites were correlated with the residential emissions which were higher in winter, but anti-correlated with the industrial emissions which were lower during the winter holiday period. The Weather Research and Forecasting with Chemistry (WRF-Chem) simulations of four pollution control strategies indicated that reduction of residential emissions is crucial to alleviate PM2.5, PM10, and CO pollution in western China, although reduction of industrial and transport emissions can reduce SO2 and NO2, respectively. Since PM2.5 and PM10 were also found to be the species most and next frequently responsible for extremely serious pollution in western China, respectively, we recommend pollution control regulations that target residential emissions.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Contaminación del Aire/análisis , Monóxido de Carbono/análisis , China , Vivienda , Conceptos Meteorológicos , Meteorología , Dióxido de Nitrógeno/análisis , Ozono/análisis , Material Particulado/análisis , Estaciones del Año , Dióxido de Azufre/análisis , Tiempo (Meteorología)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...