Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 160(15)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38624110

RESUMEN

Detecting and analyzing the local environment is crucial for investigating the dynamical processes of crystal nucleation and shape colloidal particle self-assembly. Recent developments in machine learning provide a promising avenue for better order parameters in complex systems that are challenging to study using traditional approaches. However, the application of machine learning to self-assembly on systems of particle shapes is still underexplored. To address this gap, we propose a simple, physics-agnostic, yet powerful approach that involves training a multilayer perceptron (MLP) as a local environment classifier for systems of particle shapes, using input features such as particle distances and orientations. Our MLP classifier is trained in a supervised manner with a shape symmetry-encoded data augmentation technique without the need for any conventional roto-translations invariant symmetry functions. We evaluate the performance of our classifiers on four different scenarios involving self-assembly of cubic structures, two-dimensional and three-dimensional patchy particle shape systems, hexagonal bipyramids with varying aspect ratios, and truncated shapes with different degrees of truncation. The proposed training process and data augmentation technique are both straightforward and flexible, enabling easy application of the classifier to other processes involving particle orientations. Our work thus presents a valuable tool for investigating self-assembly processes on systems of particle shapes, with potential applications in structure identification of any particle-based or molecular system where orientations can be defined.

2.
ACS Appl Mater Interfaces ; 11(43): 40909-40915, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31573187

RESUMEN

Electron beam (e-beam) has been developed for nanomaterial observation and moreover to induce structural evolutions in atomic scale. In this work, we demonstrate the deoxidation of cuprous oxide (Cu2O) and the formation of an atomically flat surface on a Cu nanowire by e-beam irradiation. To develop e-beam irradiation applications, the relation between e-beam radiation and the atomic surface is significant. Through the density functional theory simulation of atomic sputtering, an obvious disparity in the sputtering threshold has been found under different structural conditions, which leads to different structural evolutions. Both surface deoxidation and atomic surface flattening reactions have been identified as self-limiting and irreversible processes via in situ transmission electron microscope observation. Under e-beam irradiation, the dynamic mechanism of atomic surface flattening is driven by the convergence of total surface energy and confirmed by climbing-image nudged elastic band (ci-NEB) calculations. With precise control, e-beam irradiation reveals enormous potentials in atomic surface engineering.

3.
ACS Appl Mater Interfaces ; 11(3): 3582-3589, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30592409

RESUMEN

ZnS particles were grown over Cu2O cubes, octahedra, and rhombic dodecahedra for examination of their facet-dependent photocatalytic behaviors. After ZnS growth, Cu2O cubes stay photocatalytically inactive. ZnS-decorated Cu2O octahedra show enhanced photocatalytic activity, resulting from better charge carrier separation upon photoexcitation. Surprisingly, Cu2O rhombic dodecahedra give greatly suppressed photocatalytic activity after ZnS deposition. Electron paramagnetic resonance spectra agree with these experimental observations. Time-resolved photoluminescence profiles provide charge-transfer insights. The decrease in the photocatalytic activity is attributed to an unfavorable band alignment caused by significant band bending within the Cu2O(110)/ZnS(200) plane interface. A modified Cu2O-ZnS band diagram is presented. Density functional theory calculations generating plane-specific band energy diagrams of Cu2O and ZnS match well with the experimental results, showing that charge transfer across the Cu2O(110)/ZnS(200) plane interface would not happen. This example further illustrates that the actual photocatalysis outcome for semiconductor heterojunctions cannot be assumed because interfacial charge transfer is strongly facet-dependent.

4.
Chem Commun (Camb) ; 54(71): 9941-9944, 2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-30116815

RESUMEN

We utilized in situ transmission electron microscopy to observe phase transformation in CVD-grown MoS2. Significantly, the reaction was performed under electron irradiation through appropriate control of the electron dose and exposure time. Moreover, we proposed a new route between the 2H and 1T phases that involved the higher energy states TS1/TS2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA