Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
1.
Sci Total Environ ; : 173357, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38772483

RESUMEN

Submerged macrophytes are integral to the functioning of shallow lakes through their interaction with microorganisms. However, we have a limited understanding of how microbial communities in shallow lakes respond when macrophytes are restored after being historically extirpated. Here, we explored the interactions between prokaryotic communities and carbon utilization in two lakes where submerged macrophytes were restored. We found restoration reduced total carbon in sediment by 8.9 %-27.9 % and total organic carbon by 16.7 %-36.9 % relative to control treatment, but had no effects on carbon content in the overlying water. Sediment microbial communities were more sensitive to restoration than planktonic microbes and showed enhanced utilization of simple carbon substrates, such as Tween 40, after restoration. The increase in carbon utilization was attributed to declines in the relative abundance of some genera, such as Saccharicenans and Desertimonas, which were found weakly associated with the utilization of different carbon substrates. These genera likely competed with microbes with high carbon utilization in restored areas, such as Lubomirskia. Our findings highlight how restoring submerged macrophytes can enhance microbial carbon utilization and provide guidance to improve the carbon sequestration capacity of restored shallow lakes.

2.
Pharmacol Res ; 203: 107173, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38580186

RESUMEN

Our recent multi-omics studies have revealed rich sources of novel bioactive proteins and polypeptides from marine organisms including cnidarians. In the present study, we initially conducted a transcriptomic analysis to review the composition profile of polypeptides from Zoanthus sociatus. Then, a newly discovered NPY-like polypeptide-ZoaNPY was selected for further in silico structural, binding and virtually pharmacological studies. To evaluate the pro-angiogenic effects of ZoaNPY, we employed an in vitro HUVECs model and an in vivo zebrafish model. Our results indicate that ZoaNPY, at 1-100 pmol, enhances cell survival, migration and tube formation in the endothelial cells. Besides, treatment with ZoaNPY could restore a chemically-induced vascular insufficiency in zebrafish embryos. Western blot results demonstrated the application of ZoaNPY could increase the phosphorylation of proteins related to angiogenesis signaling including PKC, PLC, FAK, Src, Akt, mTOR, MEK, and ERK1/2. Furthermore, through molecular docking and surface plasmon resonance (SPR) verification, ZoaNPY was shown to directly and physically interact with NPY Y2 receptor. In view of this, all evidence showed that the pro-angiogenic effects of ZoaNPY involve the activation of NPY Y2 receptor, thereby activating the Akt/mTOR, PLC/PKC, ERK/MEK and Src- FAK-dependent signaling pathways. Furthermore, in an excision wound model, the treatment with ZoaNPY was shown to accelerate the wound healing process in mice. Our findings provide new insights into the discovery and development of novel pro-angiogenic drugs derived from NPY-like polypeptides in the future.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana , Receptores de Neuropéptido Y , Transducción de Señal , Pez Cebra , Animales , Humanos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Receptores de Neuropéptido Y/metabolismo , Proteína Quinasa C/metabolismo , Ratones , Neuropéptido Y/metabolismo , Neuropéptido Y/farmacología , Ligandos , Péptidos/farmacología , Simulación del Acoplamiento Molecular , Quinasa 1 de Adhesión Focal/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Familia-src Quinasas/metabolismo , Movimiento Celular/efectos de los fármacos
3.
Chin Med ; 19(1): 56, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38532487

RESUMEN

BACKGROUND: Overactive bladder (OAB) presents a high prevalence of 16-18% worldwide. The pathophysiology of OAB is still poorly understood while effective therapy or countermeasure are very limited. On the other hand, medicinal plants and herbal remedies have been utilized for treating lower urinary tract symptoms (LUTS) in both Eastern and Western cultures since ancient times. In recent years, accumulating progress has also been made in OAB treatment research by using medicinal plants. METHODS: Relevant literature on the studies of medicinal plants and herbs used to treat OAB was reviewed. The medicinal plants were summarized and categorized into two groups, single-herb medications and herbal formulations. RESULTS: The present review has summarized current understanding of OAB's pathophysiology, its available treatments and new drug targets. Medicinal plants and natural products which have been used or have shown potential for OAB treatment were updated and comprehensively categorized. Studies on a wide variety of medicinal plants showed promising results, although only a few phytochemicals have been isolated and identified. Until now, none of these herbal compounds have been further developed into clinical therapeutics for OAB. CONCLUSIONS: This review provides the basis for discovering and designing new phytopharmaceutical candidates with effective and well-tolerated properties to treat OAB. Increasing evidences indicate new strategies with alternative herbal treatment for OAB have high efficacy and safety, showing great promise for their clinical use. Future studies in a rigorously designed controlled manner will be beneficial to further support the eligibility of herbal treatment as OAB therapeutics.

4.
Biomed Pharmacother ; 172: 116269, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367549

RESUMEN

AGS-30, a new andrographolide derivative, showed significant anticancer and anti-angiogenic characteristics. However, its role in controlling macrophage polarization and tumor immune response is unknown. Thus, the main goals of this study are to investigate how AGS-30 regulates macrophage polarization and how it suppresses breast cancer metastasis. AGS-30 inhibited IL-4 and IL-13-induced RAW 264.7 and THP-1 macrophages into M2-like phenotype. However, AGS-30 did not affect the LPS and IFN-γ-induced polarization of M1-like macrophages. AGS-30 reduced the mRNA expressions of CD206, Arg-1, Fizz-1, Ym-1, VEGF, IL-10, MMP2, and MMP9 in M2-like macrophages in a concentration-dependent manner. In contrast, andrographolide treatment at 5 µM did not affect M1-like and M2-like macrophage polarization. The conditioned medium from M2-like macrophages increased 4T1 breast cancer cell migration and invasion, whereas AGS-30 inhibited these effects. In the 4T1 breast tumor xenograft mice, the tumor volume and weight were reduced without affecting body weight after receiving AGS-30. AGS-30 treatment also reduced lung and liver metastasis, with reduced STAT6, CD31, VEGF, and Ki67 protein expressions. Moreover, the tumors had considerably fewer M2-like macrophages and Arg-1 expression, but the proportion of M1-like macrophages and iNOS expression increased after AGS-30 treatment. Same results were found in the tail vein metastasis model. In conclusion, this study shows that AGS-30 inhibits breast cancer growth and metastasis, probably through inhibiting M2-like macrophage polarization. Our findings suggest that AGS-30 may be a potential immunotherapeutic alternative for metastatic breast cancer.


Asunto(s)
Neoplasias de la Mama , Diterpenos , Animales , Femenino , Humanos , Ratones , Neoplasias de la Mama/tratamiento farmacológico , Medios de Cultivo Condicionados , Diterpenos/farmacología , Neoplasias Mamarias Animales/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular
5.
Redox Biol ; 70: 103057, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38325196

RESUMEN

Neuroinflammation and oxidative stress play a crucial role in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease. The triggering receptor expressed on myeloid cells 2 (TREM2), highly expressed by microglia in the central nervous system (CNS), can modulate neuroinflammatory responses. Currently, there are no approved drugs specifically targeting TREM2 for CNS diseases. Aspidosperma alkaloids have shown potential as anti-inflammatory and neuroprotective agents. This study aimed to elucidate the potential therapeutic effect of Hecubine, a natural aspidosperma-type alkaloid, as a TREM2 activator in lipopolysaccharide (LPS)-stimulated neuroinflammation in in vitro and in vivo models. In this study, molecular docking and cellular thermal shift assay (CTSA) were employed to investigate the interaction between Hecubine and TREM2. Enzyme-linked immunosorbent assay (ELISA), quantitative PCR, immunofluorescence, Western blotting, and shRNA gene knockdown were used to assess the anti-neuroinflammatory and antioxidant effects of Hecubine in microglial cells and zebrafish. Our results revealed that Hecubine directly interacted with TREM2, leading to its activation. Knockdown of TREM2 mRNA expression significantly abolished the anti-inflammatory and antioxidant effects of Hecubine on LPS-stimulated proinflammatory mediators (NO, TNF-α, IL-6, and IL-1ß) and oxidative stress in microglia cells. Furthermore, Hecubine upregulated Nrf2 expression levels while downregulating TLR4 signaling expression levels both in vivo and in vitro. Silencing TREM2 upregulated TLR4 and downregulated Nrf2 signaling pathways, mimicking the effect of Hecubine, further supporting TREM2 as the drug target by which Hecubine inhibits neuroinflammation. In conclusion, this is the first study to identify a small molecule, namely Hecubine directly targeting TREM2 to mediate anti-neuroinflammation and anti-oxidative effects, which serves as a potential therapeutic agent for the treatment of neural inflammation-associated CNS diseases.


Asunto(s)
Enfermedad de Alzheimer , Aspidosperma , Animales , Lipopolisacáridos/toxicidad , Aspidosperma/metabolismo , Enfermedades Neuroinflamatorias , Receptor Toll-Like 4/metabolismo , Factor 2 Relacionado con NF-E2 , Antioxidantes/uso terapéutico , Simulación del Acoplamiento Molecular , Pez Cebra/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/genética , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Enfermedad de Alzheimer/metabolismo
6.
Eur J Pharm Sci ; 194: 106696, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38199443

RESUMEN

Parkinson's disease is the second most prevalent age-related neurodegenerative disease and disrupts the lives of people aged >60 years. Meanwhile, single-target drugs becoming inapplicable as PD pathogenesis diversifies. Mitochondrial dysfunction and neurotoxicity have been shown to be relevant to the pathogenesis of PD. The novel synthetic compound J24335 (11-Hydroxy-1-(8-methoxy-5-(trifluoromethyl)quinolin-2-yl)undecan-1-one oxime), which has been researched similarly to J2326, has the potential to be a multi-targeted drug and alleviate these lesions. Therefore, we investigated the mechanism of action and potential neuroprotective function of J24335 against 6-OHDA-induced neurotoxicity in mice, and in PC12 cell models. The key target of action of J24335 was also screened. MTT assay, LDH assay, flow cytometry, RT-PCR, LC-MS, OCR and ECAR detection, and Western Blot analysis were performed to characterize the neuroprotective effects of J24335 on PC12 cells and its potential mechanism. Behavioral tests and immunohistochemistry were used to evaluate behavioral changes and brain lesions in mice. Moreover, bioinformatics was employed to assess the drug-likeness of J24335 and screen its potential targets. J24335 attenuated the degradation of mitochondrial membrane potential and enhanced glucose metabolism and mitochondrial biosynthesis to ameliorate 6-OHDA-induced mitochondrial dysfunction. Animal behavioral tests demonstrated that J24335 markedly improved motor function and loss of TH-positive neurons and dopaminergic nerve fibers, and contributed to an increase in the levels of dopamine and its metabolites in brain tissue. The activation of both the CREB/PGC-1α/NRF-1/TFAM and PKA/Akt/GSK-3ß pathways was a major contributor to the neuroprotective effects of J24335. Furthermore, bioinformatics predictions revealed that J24335 is a low toxicity and highly BBB permeable compound targeting 8 key genes (SRC, EGFR, ERBB2, SYK, MAPK14, LYN, NTRK1 and PTPN1). Molecular docking suggested a strong and stable binding between J24335 and the 8 core targets. Taken together, our results indicated that J24335, as a multi-targeted neuroprotective agent with promising therapeutic potential for PD, could protect against 6-OHDA-induced neurotoxicity via two potential pathways in mice and PC12 cells.


Asunto(s)
Enfermedades Mitocondriales , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Humanos , Ratas , Ratones , Animales , Oxidopamina/farmacología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Células PC12 , Glucógeno Sintasa Quinasa 3 beta , Simulación del Acoplamiento Molecular , Dopamina , Neuronas Dopaminérgicas
7.
Inflammopharmacology ; 32(1): 393-404, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37429999

RESUMEN

Medulla Tetrapanacis (MT) is a commonly used herb to promote lactation and manage mastitis in lactating mothers. However, its anti-inflammatory and anti-bacterial effects are currently unknown. We hypothesized that MT water extract possesses anti-inflammatory and anti-bacterial effects by modulating macrophage polarization to reduce the release of inflammatory mediators and phagocytosis via inactivation of MAPKs pathways. The chemical composition of the MT water extract was analyzed by UPLC-Orbitrap-mass spectrometry. The anti-inflammatory and anti-bacterial properties of the MT water extract were examined using LPS-stimulated inflammation and Staphylococcus aureus infection model in RAW 264.7 cells, respectively. The underlying mechanism of action of the MT water extract was also investigated. We identified eight compounds by UPLC-Orbitrap-mass spectrometry that are abundant within the MT water extract. MT water extract significantly suppressed LPS-induced nitric oxide, TNF-α and IL-6 secretion in RAW 264.7 cells which was accompanied by the promotion of macrophage polarization from pro-inflammatory towards anti-inflammatory phenotypes. MT water extract significantly suppressed the LPS-induced MAPK activation. Finally, MT water extract decreased the phagocytic capacity of the RAW 264.7 cells against S. aureus infection. MT water extract could suppress LPS-induced inflammation by promoting macrophages towards an anti-inflammatory phenotype. In addition, MT also inhibited the growth of S. aureus.


Asunto(s)
Lactancia , Lipopolisacáridos , Femenino , Humanos , Lipopolisacáridos/farmacología , Staphylococcus aureus , Transducción de Señal , Inflamación/tratamiento farmacológico , Macrófagos , Antiinflamatorios/farmacología
8.
Environ Toxicol ; 39(3): 1258-1268, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37929299

RESUMEN

6-benzylaminopurine (6-BA), a multifunctional plant growth regulator, which is frequently used worldwide to improve qualities of various crops, is an important ingredient in production of "toxic bean sprouts." Although there is no direct evidence of adverse effects, its hazardous effects, as well as joint toxicity with other chemicals, have received particular attention and aroused furious debate between proponents and environmental regulators. By use of human umbilical vein endothelial cells (HUVECs), adverse effects of 6-BA to human-derived cells were first demonstrated in this study. A total of 25-50 mg 6-BA/L inhibited proliferation, migration, and formation of tubular-like structures by 50% in vitro. Results of Western blot analyses revealed that exposure to 6-BA differentially modulated the MAPK signal transduction pathway in HUVECs. Specifically, 6-BA decreased phosphorylation of MEK and ERK, but increased phosphorylation of JNK and P38. In addition, 6-BA exacerbated atorvastatin-induced cerebral hemorrhage via increasing hemorrhagic occurrence by 60% and areas by 4 times in zebrafish larvae. In summary, 6-BA elicited toxicity to the endothelial system of HUVECs and zebrafish. This was due, at least in part, to discoordination of MAPK signaling pathway, which should pose potential risks to the cerebral vascular system.


Asunto(s)
Compuestos de Bencilo , Hemorragia Cerebral , Purinas , Pez Cebra , Animales , Humanos , Atorvastatina/metabolismo , Atorvastatina/farmacología , Pez Cebra/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Hemorragia Cerebral/metabolismo
9.
Toxicol Appl Pharmacol ; 480: 116745, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37931757

RESUMEN

The aggregation of misfolded proteins, such as α-synuclein in Parkinson's disease (PD), occurs intracellularly or extracellularly in the majority of neurodegenerative diseases. The immunoproteasome has more potent chymotrypsin-like activity than normal proteasome. Thus, degradation of α-synuclein aggregation via immunoproteasome is an attractive approach for PD drug development. Herein, we aimed to determine if novel compound, 11-Hydroxy-1-(8-methoxy-5-(trifluoromethyl)quinolin-2-yl)undecan-1-one oxime (named as J24335), is a promising candidate for disease-modifying therapy to prevent the pathological progression of neurodegenerative diseases, such as PD. The effects of J24335 on inducible PC12/A53T-α-syn cell viability and cytotoxicity were evaluated by MTT assay and LDH assay, respectively. Evaluation of various proteasome activities was done by measuring the luminescence of enzymatic activity after the addition of different amounts of aminoluciferin. Immunoblotting and real-time PCR were employed to detect the expression of various proteins and genes, respectively. We also used a transgenic mouse model for behavioral testing and immunochemical analysis, to assess the neuroprotective effects of J24335. J24335 inhibited wild-type and mutant α-synuclein aggregation without affecting the growth or death of neuronal cells. The inhibition of α-synuclein aggregation by J24335 was caused by activation of immunoproteasome, as mediated by upregulation of LMP7, and increased cellular chymotrypsin-like activity in 20S proteasome. J24335-enhanced immunoproteasome activity was mediated by PKA/Akt/mTOR pathway activation. Moreover, animal studies revealed that J24335 treatment markedly mitigated both the loss of tyrosine hydroxylase-positive (TH-) neurons and impaired motor skill development. This is the first report to use J24335 as an immunoproteasome enhancing agent to antagonize pathological α-synuclein-mediated neurodegeneration.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Ratones , Animales , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Quimotripsina/uso terapéutico , Enfermedad de Parkinson/genética , Ratones Transgénicos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Modelos Animales de Enfermedad
10.
Int J Nanomedicine ; 18: 5457-5472, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37771407

RESUMEN

Introduction: The insufficient targeting delivery of therapeutic agents greatly impeded the treatment outcomes of rheumatoid arthritis (RA). Despite the recognized therapeutic advantages of gambogic acid (GBA) in inflammatory diseases, its high delivery efficiency to inflammatory site still limits its clinical application. Self-assembly of drug dimers into carrier-free nanoparticles (NPs) has become a straightforward and attractive approach to develop nanomedicines for RA treatment. Herein, homodimers of GBA were designed to form the carrier-free NPs by self-assembly for RA treatment. Methods: The synthetic gambogic acid dimers (GBA2) were self-assembled into NPs using a one-step solvent evaporation method. The size distribution, morphology, drug-loading efficiency (DLE) and storage stability were evaluated. A molecular dynamic simulation was conducted to gain further insight into the self-assembly mechanisms of GBA2/NPs. Besides, we investigated the cytotoxicity, apoptosis and cellular uptake profiles of GBA2/NPs in macrophages and osteoclasts. Finally, the specific biodistribution on the ankles of adjuvant-induced arthritis (AIA) mice, and the anti-RA efficacy of the AIA rat model were assessed. Results: GBA2/NPs exhibited the uniform spherical structure, possessing excellent colloidal stability, high self-assembly stability, high drug loading and low hemolytic activity. Comparing with GBA, GBA2/NPs showed higher cytotoxicity, cellular uptake and apoptosis rate against osteoclasts. In addition, GBA2/NPs exhibited much higher accumulation in ankle joints in vivo. As expected, the systematic administration of GBA2/NPs resulted in the greater alleviation of arthritic symptoms, cartilage protection, and inflammation, notably the reduced systemic toxicity compared to free GBA. Conclusion: GBA2/NPs formed GBA dimers exhibited the superior accumulation in the inflamed joint and anti-RA activity, potentially attributing to the similar extravasation through leaky vasculature and subsequent inflammatory cell-mediated sequestration ("ELVIS") effects in inflamed joint and the enhanced cellular uptake in macrophages and osteoclasts. Our findings provide substantial evidence that self-assembly of GBA2/NPs would be a promising therapeutic alternative for RA treatment.


Asunto(s)
Artritis Reumatoide , Nanopartículas , Xantonas , Ratas , Ratones , Animales , Nanomedicina , Distribución Tisular , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/inducido químicamente , Xantonas/uso terapéutico , Nanopartículas/química
11.
Adv Mater ; 35(51): e2305287, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37547984

RESUMEN

Cancer recurrence and metastasis are two major challenges in the current clinical therapy. In this work, a novel diketopyrrolopyrrole-based photothermal reagent (DCN) with unique J-aggregation-induced redshift is synthesized to achieve efficient tumor thermal ablation under safe power (0.33 W cm-2 ). Meanwhile, S-nitroso-N-acetylpenicillamine (SNAP) is co-loaded with near-infrared-absorbing DCN in amphiphilic polymers to realize heat-induced massive release of nitric oxide (NO), which can form oxidant peroxynitrite (ONOO- ) to active matrix metalloproteinases (MMPs), thereby degrading the compact tumor extracellular matrix to improve the ablation depth and infiltration of immune cells. Through a facile supramolecular assembly method, the DCN/SNAP nanoparticles are anchored to liquid-nitrogen-frozen cancer cells, achieving enhanced antitumor immune responses and effective inhibition of distant tumors and pulmonary metastases after only one treatment. The safety and effectiveness of this supramolecular cell-conjugation platform are verified by 2D/3D cellular experiments and bilateral tumor model, confirming the thermal-ablation-gas-permeation-antigen-presentation therapeutic mode has promising anticancer prospects.


Asunto(s)
Neoplasias Pulmonares , Nanopartículas , Neoplasias , Humanos , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Recurrencia Local de Neoplasia , Neoplasias/tratamiento farmacológico , Fototerapia
12.
Chin Med ; 18(1): 108, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37641047

RESUMEN

BACKGROUND: Angiogenesis is regarded as a critical role in bone repair and regeneration, involving in pathological bone disorders such as osteoporosis. Aucubin, an iridoid glycoside primarily derived from Eucommia ulmoides, is reported to inhibit osteoclast activity, enhance bone formation and promote angiogenesis in osteoporosis models. Our study is to further investigate the anti-osteoporosis effect of aucubin in transgenic medaka, and the pro-angiogenic effect of aucubin and its mechanism of action both in vivo and in vitro. METHODS: The anti-osteoporosis effect of aucubin was confirmed by using RANKL-stimulated bone resorption transgenic medaka. The pro-angiogenic effect of aucubin in vivo was investigated using vascular endothelial growth factor (VEGF) tyrosine kinase inhibitor II (VRI)-induced vascular insufficient transgenic zebrafish model. Furthermore, endothelial cell proliferation, migration, tube formation and the mechanisms were evaluated to identify the pro-angiogenic effect of aucubin in normal and su5416-injured human umbilical vein endothelial cells (HUVECs). RESULTS: Aucubin decreased the resorption of the mineralized bone matrix and centra degradation in heat-shocked transgenic col10α1:nlGFP/rankl:HSE:CFP medaka. Moreover, aucubin reversed VRI-induced vascular insufficiency in zebrafish through regulating flt1, kdr, kdrl, vegfaa, ang-1, ang-2, tie1 and tie2 mRNA expressions in Tg(fli1a:EGFP)y1 or AB wild type zebrafish. Aucubin promoted cell proliferation by upregulating p-mTOR, p-Src, p-MEK, p-Erk1/2, p-Akt and p-FAK in HUVECs. Furthermore, aucubin exhibited a pro-angiogenic effect on su5416-injured HUVECs by promoting their proliferation, migration, and tube formation through regulating the phosphorylation of VEGFR2, MEK, ERK and the ratio of Bcl2-Bax. CONCLUSION: Aucubin could reduce bone resorption in RANKL-induced osteoporosis medaka by live imaging. Meanwhile, aucubin exhibited a protective effect in VRI-induced vascular insufficient zebrafish by regulating VEGF-VEGFR and Ang-Tie signaling pathways. Additionally, aucubin promoted the proliferation, migration and tube formation of HUVECs probably by mediating VEGFR2/MEK/ERK, Akt/mTOR and Src/FAK signalling pathways. This study further indicated the dual effect of aucubin on angiogenesis and osteogenesis which may be beneficial to its treatment of osteoporosis.

13.
Phytother Res ; 37(10): 4442-4456, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37259475

RESUMEN

Cancer metastasis remains the most common cause of death in breast cancer patients. Tumor-associated macrophages (TAMs) are a novel therapeutic target for the treatment of metastatic breast cancer. Despite the good anti-cancer activity of garcinone E (GE), there are no reports on its therapeutic effects on breast cancer metastasis. The objective of this study was to examine the anti-cancer effects of GE on metastatic breast cancer. RAW 264.7 and THP-1 cells were polarized to M2 macrophages by IL-4/IL-13 in vitro. A 4T1 mouse breast cancer model and the tail vein breast cancer metastasis model were used to explore the effect of GE on breast cancer growth and metastasis in vivo. In vitro studies showed that GE dose-dependently suppressed IL-4 + IL-13-induced expression of CD206 in both RAW 264.7 cells and differentiated THP-1 macrophages. However, GE did not affect the LPS + IFN-γ-induced polarization to the M1-like macrophages in vitro. GE inhibited the expression of the M2 macrophage specific genes in RAW 264.7 cells, and simultaneously impaired M2 macrophage-induced breast cancer cell proliferation and migration, and angiogenesis. In animal studies, GE significantly suppressed tumor growth, angiogenesis, and lung metastasis in 4T1 tumor-bearing mice, without causing toxicity. In both tumor and lung tissues, the proportion of M2-like TAMs was significantly decreased while the proportion of M1-like TAMs was markedly increased by GE treatment. Mechanistically, GE inhibited phosphorylation of STAT6 in vitro and in vivo. Our results demonstrate for the first time that GE suppresses breast cancer growth and pulmonary metastasis by modulating M2-like macrophage polarization through the STAT6 signaling pathway.


Asunto(s)
Neoplasias de la Mama , Humanos , Animales , Ratones , Femenino , Neoplasias de la Mama/patología , Macrófagos Asociados a Tumores , Línea Celular Tumoral , Interleucina-4/metabolismo , Interleucina-4/farmacología , Interleucina-4/uso terapéutico , Interleucina-13/metabolismo , Interleucina-13/farmacología , Interleucina-13/uso terapéutico , Transducción de Señal , Factor de Transcripción STAT6/metabolismo , Factor de Transcripción STAT6/farmacología
14.
Cells ; 12(11)2023 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-37296660

RESUMEN

Zebrafish (Danio rerio) assays provide a versatile pharmacological platform to test compounds on a wide range of behaviors in a whole organism. A major challenge lies in the lack of knowledge about the bioavailability and pharmacodynamic effects of bioactive compounds in this model organism. Here, we employed a combined methodology of LC-ESI-MS/MS analytics and targeted metabolomics with behavioral experiments to evaluate the anticonvulsant and potentially toxic effects of the angular dihydropyranocoumarin pteryxin (PTX) in comparison to the antiepileptic drug sodium valproate (VPN) in zebrafish larvae. PTX occurs in different Apiaceae plants traditionally used in Europe to treat epilepsy but has not been investigated so far. To compare potency and efficacy, the uptake of PTX and VPN into zebrafish larvae was quantified as larvae whole-body concentrations together with amino acids and neurotransmitters as proxy pharmacodynamic readout. The convulsant agent pentylenetetrazole (PTZ) acutely reduced the levels of most metabolites, including acetylcholine and serotonin. Conversely, PTX strongly reduced neutral essential amino acids in a LAT1 (SLCA5)-independent manner, but, similarly to VPN specifically increased the levels of serotonin, acetylcholine, and choline, but also ethanolamine. PTX dose and time-dependent manner inhibited PTZ-induced seizure-like movements resulting in a ~70% efficacy after 1 h at 20 µM (the equivalent of 4.28 ± 0.28 µg/g in larvae whole-body). VPN treated for 1 h with 5 mM (the equivalent of 18.17 ± 0.40 µg/g in larvae whole-body) showed a ~80% efficacy. Unexpectedly, PTX (1-20 µM) showed significantly higher bioavailability than VPN (0.1-5 mM) in immersed zebrafish larvae, possibly because VPN in the medium dissociated partially to the readily bioavailable valproic acid. The anticonvulsive effect of PTX was confirmed by local field potential (LFP) recordings. Noteworthy, both substances specifically increased and restored whole-body acetylcholine, choline, and serotonin levels in control and PTZ-treated zebrafish larvae, indicative of vagus nerve stimulation (VNS), which is an adjunctive therapeutic strategy to treat refractory epilepsy in humans. Our study demonstrates the utility of targeted metabolomics in zebrafish assays and shows that VPN and PTX pharmacologically act on the autonomous nervous system by activating parasympathetic neurotransmitters.


Asunto(s)
Pentilenotetrazol , Estimulación del Nervio Vago , Humanos , Animales , Pentilenotetrazol/toxicidad , Ácido Valproico/farmacología , Ácido Valproico/uso terapéutico , Pez Cebra/fisiología , Serotonina , Acetilcolina , Espectrometría de Masas en Tándem , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Colina
15.
Mol Pharm ; 20(6): 3187-3201, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37167021

RESUMEN

Mesoporous silica nanoparticles (MSNs) are widely used in the biomedical field because of their unique and excellent properties. However, the potential toxicity of different shaped MSNs via injection has not been fully studied. This study aims to systematically explore the impact of shape and shear stress on the toxicity of MSNs after injection. An in vitro blood flow model was developed to investigate the cytotoxicity and the underlying mechanisms of spherical MSNs (S-MSN) and rodlike MSNs (R-MSN) in human umbilical vein endothelial cells (HUVECs). The results suggested that the interactions between MSNs and HUVECs under the physiological flow conditions were significantly different from that under static conditions. Whether under static or flow conditions, R-MSN showed better cellular uptake and less oxidative damage than S-MSN. The main mechanism of cytotoxicity induced by R-MSN was due to shear stress-dependent mechanical damage of the cell membrane, while the toxicity of S-MSN was attributed to mechanical damage and oxidative damage. The addition of fetal bovine serum (FBS) alleviated the toxicity of S-MSN by reducing cellular uptake and oxidative stress under static and flow conditions. Moreover, the in vivo results showed that both S-MSN and R-MSN caused cardiovascular toxicity in zebrafish and mouse models due to the high shear stress, especially in the heart. S-MSN led to severe oxidative damage at the accumulation site, such as liver, spleen, and lung in mice, while R-MSN did not cause significant oxidative stress. The results of in vitro blood flow and in vivo models indicated that particle shape and shear stress are crucial to the biosafety of MSNs, providing new evidence for the toxicity mechanisms of the injected MSNs.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Ratones , Humanos , Animales , Porosidad , Dióxido de Silicio/toxicidad , Células Endoteliales , Pez Cebra , Nanopartículas/toxicidad
16.
Phytomedicine ; 114: 154757, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37011418

RESUMEN

BACKGROUND: Breast cancer metastasis is leading cause of cancer death among women worldwide. Tumor-associated macrophages (TAMs) have been considered as potential targets for treating breast cancer metastasis because they promote tumor growth and development. Glycyrrhetinic acid (GA) is one of the most important phytochemicals of licorice which has shown promising anti-cancer efficacies in pre-clinical trials. However, the regulatory effect of GA on the polarization of TAMs remains elusive. PURPOSE: To investigate the role of GA in regulating the polarization of M2 macrophages and inhibiting breast cancer metastasis, and to further explore its underlying mechanisms of action. STUDY DESIGN: IL-4 / IL-13-treated RAW 264.7 and THP-1 cells were used as the M2-polarized macrophages in vitro. A 4T1 mouse breast cancer model and the tail vein breast cancer metastasis model were applied to study the effect of GA on breast cancer growth and metastasis in vivo. RESULTS: In vitro studies showed that GA significantly inhibited IL-4 / IL 13-induced M2-like polarization in RAW 264.7 and THP-1 macrophages without affecting M1-like polarization. GA strongly decreased the expression of M2 macrophage markers CD206 and Arg-1, and reduced the levels of the pro-angiogenic molecules VEGF, MMP9, MMP2 and IL-10 in M2 macrophages. GA also increased the phosphorylation of JNK1/2 in M2 macrophages. Moreover, GA significantly suppressed M2 macrophage-induced cell proliferation and migration in 4T1 cancer cells and HUVECs. Interestingly, the inhibitory effects of GA on M2 macrophages were abolished by a JNK inhibitor. Animal studies showed that GA significantly suppressed tumor growth, angiogenesis, and lung metastasis in BALB/c mice bearing breast tumor. In tumor tissues, GA reduced the number of M2 macrophages but elevated the proportion of M1 macrophages, accompanied by activation of JNK signaling. Similar results were found in the tail vein breast cancer metastasis model. CONCLUSION: This study demonstrated for the first time that GA could effectively suppress breast cancer growth and metastasis by inhibiting macrophage M2 polarization via activating JNK1/2 signaling. These findings indicate that GA could be served as the lead compound for the future development of anti-breast cancer drug.


Asunto(s)
Interleucina-4 , Neoplasias Pulmonares , Femenino , Animales , Ratones , Humanos , Interleucina-4/metabolismo , Macrófagos , Transducción de Señal , Neoplasias Pulmonares/tratamiento farmacológico , Células THP-1 , Interleucina-13/metabolismo , Línea Celular Tumoral , Melanoma Cutáneo Maligno
17.
J Ethnopharmacol ; 311: 116430, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36997133

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Huangqin Decoction (HQD), a traditional Chinese medicine (TCM) formula chronicled in Shang Han Lun, is safe and effective for treatment of ulcerative colitis (UC). AIM OF THE STUDY: To investigate the effect of HQD against dextran sulfate sodium (DSS)-induced UC mice by regulating gut microbiota and metabolites, and further explore the mechanism of fatty acid metabolism on macrophage polarization. MATERIALS AND METHODS: Based on 3% dextran sulfate sodium (DSS)-induced UC mice model, clinical symptoms observation (body weight, DAI, and colon length) and histological inspection were used to evaluate the efficacy of HQD and fecal microbiota transplantation (FMT) from HQD-treated mice. The gut microbiota and metabolites were detected by 16S rRNA sequencing and metabolomics analysis. The parameters of fatty acid metabolism, macrophage polarization, and FFAR1/FFAR4-AMPK-PPARα pathway were analyzed by immunofluorescence analysis, western blotting, and real-time PCR. Then, the effects of FFAR1 and FFAR4 on macrophage polarization were examined by agonists based on LPS-induced RAW264.7 cell model. RESULTS: The results showed that FMT, like HQD, ameliorated UC by improving weight loss, restoring colon length, and reducing DAI scores and histopathological scores. Besides, HQD and FMT both enhanced the richness of gut microbiota, and modulated intestinal bacteria and metabolites to achieve a new balance. Untargeted metabolomics analysis revealed that fatty acids, especially long-chain fatty acids (LCFAs), dominated in HQD against DSS-induced UC by regulating the gut microenvironment. Further, FMT and HQD recovered the expression of fatty acid metabolism-related enzymes, and simultaneously activated FFAR1/FFAR4-AMPK-PPARα pathway but suppressed NF-κB pathway. Combined with cell experiment, HQD and FMT promoted macrophage polarization from M1 toward M2, which were well associated with anti-inflammatory cytokines and combined with the activated FFAR4. CONCLUSIONS: The mechanism of HQD against UC was related to regulating fatty acid metabolism to mediate M2 macrophage polarization by activating the FFAR4-AMPK-PPARα pathway.


Asunto(s)
Colitis Ulcerosa , Colitis , Animales , Ratones , PPAR alfa/genética , Proteínas Quinasas Activadas por AMP , Scutellaria baicalensis , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Sulfato de Dextran/toxicidad , ARN Ribosómico 16S , Colon , Modelos Animales de Enfermedad , Ácidos Grasos , Ratones Endogámicos C57BL
18.
Sci Total Environ ; 878: 163194, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37001669

RESUMEN

6-Benzylaminopurine (6-BA) is ubiquitous in agricultural production and is accessible to humans through diets. The modulation of lipid metabolism by 6-BA has been previously demonstrated in plants and oleaginous microorganisms. Therefore, whether it alters lipid homeostasis in other living organisms requires further investigation. In this study, doses ≥10 mg 6-BA/L caused malformation of the yolk sac, steatosis, and other hepatopathies in zebrafish larvae. Exposure to 25 mg 6-BA/L resulted in increased levels of triglyceride and total cholesterol. Results of transcriptomic analysis indicated that 6-BA alters genes associated with fatty acid and glycerophospholipid metabolism. Among them, the expression levels of hmgcra, elovl7b, and apobb.2 were downregulated, whereas those of lpcat3, bco1l, cyp7al, fabp1b.1, elp6, pde6ha, apoa4b.2_2, sgk1, dgkaa, and mogat2 were upregulated. Correspondingly, a study of the metabolome identified lysophosphatidylcholine (LPC) as the major differentially expressed metabolite in response to 6-BA treatment. Therefore, abnormal accumulation of LPCs and dyshomeostasis of glycerophospholipid metabolism were identified as potential mechanisms causing the toxicity of 6-BA, which should be assessed to understand the risks of 6-BA and the products contaminated by it. ENVIRONMENTAL IMPLICATION: 6-Benzylaminopurine (6-BA), an important residue in "toxic bean sprouts," is ubiquitous in agricultural production and is common in typical diets. Its regulation of lipid metabolism has been demonstrated in plants and oleaginous microorganisms. Whether it alters lipid homeostasis in other organisms and the underlying mechanisms remain largely unknown. The worldwide use of 6-BA and the potential exposure of humans have aroused public attention owing to its hazardous effects; thus, its hazardous effects, particularly those on lipid homeostasis, deserve careful clarification.


Asunto(s)
Metabolismo de los Lípidos , Pez Cebra , Humanos , Animales , Pez Cebra/metabolismo , Glicerofosfolípidos/metabolismo , Lípidos
19.
ACS Nano ; 17(4): 4034-4049, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36739531

RESUMEN

Sonodynamic therapy (SDT) is a noninvasive technique for local antitumor treatment; however, its clinical application is often limited by the low tumor accumulation of SDT agents, tumor's hypoxic microenvironment, and cytoprotective effects of autophagy. To address these issues, herein we developed surface-engineered chlorella (Chl, a green algae) as a targeted drug carrier and sustainable oxygen supplier (via photosynthesis) for significantly improved SDT via hypoxia alleviation as well as autophagy inhibition of chloroquine phosphate. In this design, the macrophage membrane was coated onto Chl to form macrophage-mimetic Chl (MChl) to increase its biocompatibility and targeted tumor accumulation driven by the inflammatory-homing effects of macrophage membranes. In addition, the membrane coating on Chl allowed lipid insertion to yield ß-cyclodextrin (ß-CD) modified MChl (CD-MChl). Subsequently, supramolecular conjugates of MChl-NP were constructed via host-guest interactions between CD-MChl and adamantane (ADA)-modified liposome (ADA-NP), and the anchored liposome went with CD-MChl hand-in-hand to the tumor tissues for co-delivery of Chl, hematoporphyrin, and chloroquine phosphate (loaded in ADA-NP). The synergistic therapy achieved via local oxygenation, SDT, and autophagy inhibition maximally improved the therapeutic efficacy of MChl-CQ-HP-NP against melanoma. Tumor rechallenging results revealed that the changes of tumor microenvironment including hypoxia alleviation, SDT induced immunogenic cell death, and autophagy inhibition collectively induced a strong antitumor immune response and memory.


Asunto(s)
Chlorella , Microalgas , Terapia por Ultrasonido , Humanos , Liposomas/farmacología , Línea Celular Tumoral , Chlorella/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Hipoxia/metabolismo , Inmunoterapia , Autofagia , Macrófagos/metabolismo , Terapia por Ultrasonido/métodos
20.
Cell Biosci ; 13(1): 4, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36624495

RESUMEN

BACKGROUND: Neural stem cells (NSCs) are considered as candidates for cell replacement therapy in many neurological disorders. However, the propensity for their differentiation to proceed more glial rather than neuronal phenotypes in pathological conditions limits positive outcomes of reparative transplantation. Exogenous physical stimulation to favor the neuronal differentiation of NSCs without extra chemical side effect could alleviate the problem, providing a safe and highly efficient cell therapy to accelerate neurological recovery following neuronal injuries. RESULTS: With 7-day physiological electric field (EF) stimulation at 100 mV/mm, we recorded the boosted neuronal differentiation of NSCs, comparing to the non-EF treated cells with 2.3-fold higher MAP2 positive cell ratio, 1.6-fold longer neuronal process and 2.4-fold higher cells ratio with neuronal spontaneous action potential. While with the classical medium induction, the neuronal spontaneous potential may only achieve after 21-day induction. Deficiency of either PI3Kγ or ß-catenin abolished the above improvement, demonstrating the requirement of the PI3K/Akt/GSK-3ß/ß-catenin cascade activation in the physiological EF stimulation boosted neuronal differentiation of NSCs. When transplanted into the spinal cord injury (SCI) modelled mice, these EF pre-stimulated NSCs were recorded to develop twofold higher proportion of neurons, comparing to the non-EF treated NSCs. Along with the boosted neuronal differentiation following transplantation, we also recorded the improved neurogenesis in the impacted spinal cord and the significantly benefitted hind limp motor function repair of the SCI mice. CONCLUSIONS: In conclusion, we demonstrated physiological EF stimulation as an efficient method to boost the neuronal differentiation of NSCs via the PI3K/Akt/GSK-3ß/ß-catenin activation. Pre-treatment with the EF stimulation induction before NSCs transplantation would notably improve the therapeutic outcome for neurogenesis and neurofunction recovery of SCI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...