Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ChemMedChem ; 12(8): 580-589, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28296169

RESUMEN

Polo-like kinase 1 (PLK1) plays crucial roles in various stages of oocyte maturation. Recently, we reported that the peptidomimetic compound AB103-8, which targets the polo box domain (PBD) of PLK1, affects oocyte meiotic maturation and the resumption of meiosis. However, to overcome the drawbacks of peptidic compounds, we designed and synthesized a series of pyrrole-based small-molecule inhibitors and tested them for their effects on the rates of porcine oocyte maturation. Among them, the macrocyclic compound (E/Z)-3-(2,16-dioxo-19-(4-phenylbutyl)-3,19-diazabicyclo[15.2.1]icosa-1(20),6,17-trien-3-yl)propyl dihydrogen phosphate (4) showed the highest inhibitory activity with enhanced inhibition against embryonic blastocyst formation. Furthermore, the addition of this compound to culture media efficiently blocked the maturation of porcine and mouse oocytes, indicating its ability to penetrate the zona pellucida and cell membrane. We investigated mouse oocytes treated with compound 4, and the resulting impairment of spindle formation confirmed PLK1 inhibition. Finally, molecular modeling studies with PLK1 PBD also confirmed the presence of significant interactions between compound 4 and PLK1 PBD binding pocket residues, including those in the phosphate, tyrosine-rich, and pyrrolidine binding pockets. Collectively, these results suggest that the macrocyclic compound 4 may serve as a promising template for the development of novel contraceptive agents.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Compuestos Macrocíclicos/farmacología , Oocitos/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Pirroles/farmacología , Animales , Compuestos de Azabiciclo/farmacología , Permeabilidad de la Membrana Celular , Compuestos Macrocíclicos/síntesis química , Compuestos Macrocíclicos/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Oligopéptidos/farmacología , Organofosfatos/síntesis química , Organofosfatos/farmacología , Dominios Proteicos , Pirroles/síntesis química , Pirroles/metabolismo , Huso Acromático/efectos de los fármacos , Huso Acromático/fisiología , Porcinos , Zona Pelúcida/efectos de los fármacos , Zona Pelúcida/fisiología , Quinasa Tipo Polo 1
2.
Mol Reprod Dev ; 83(9): 792-801, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27508507

RESUMEN

Anillin is a scaffold protein that recruits several proteins involved in cleavage furrow formation during cytokinesis. The role of anilllin in symmetric cell divisions in somatic cells has been intensively studied, yet its involvement in cleavage furrow formation is still elusive. In this study, we investigated the role of anillin in mammalian oocyte maturation and cytokinesis. We found that anillin is localized around the nucleus during the oocyte germinal-vesicle stage, and spreads to the cytoplasm after germinal vesicle breakdown. Thereafter, anillin concentrates at the site of the cleavage furrow from anaphase I to metaphase II. Disruption of anillin activity by microinjecting oocytes with specific siRNAs resulted in a failure of polar body extrusion and asymmetric division, and caused abnormal chromosome segregation during anaphase I. Furthermore, pharmacological inhibition of myosin light chain using Y-27632 or ML-7 resulted in decreased anillin expression. Collectively, our data suggest that anillin is an essential intracellular component that maintains the integrity of asymmetric division in mouse oocytes. Mol. Reprod. Dev. 83: 792-801, 2016 © 2016 Wiley Periodicals, Inc.


Asunto(s)
Anafase/fisiología , División Celular Asimétrica/fisiología , Proteínas Contráctiles/metabolismo , Metafase/fisiología , Oocitos/metabolismo , Animales , Proteínas Contráctiles/genética , Femenino , Ratones , Ratones Endogámicos ICR , Oocitos/citología
3.
Mol Reprod Dev ; 82(11): 849-58, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26175189

RESUMEN

Oocyte meiosis involves a unique asymmetric division involving spindle movement from the central cytoplasm to the cortex, followed by polar body extrusion. ROCK is a Rho-GTPase effector involved in various cellular functions in somatic cells as well as oocyte meiosis. ROCK was previously shown to promote actin organization by phosphorylating several downstream targets, including LIM domain kinase (LIMK), phosphorylated cofilin (p-cofilin), and myosin light chain (MLC). In this study, we investigated the roles of ROCK and MLC during bovine oocyte meiosis. We found that ROCK was localized around the nucleus at the oocyte's germinal-vesicle (GV) stage, but spreads to the rest of the cytoplasm in later developmental stages. On the other hand, phosphorylated MLC (p-MLC) localized at the cortex, and its abundance decreased by the metaphase-II stage. Disrupting ROCK activity, via RNAi or the chemical inhibitor Y-27632, blocked both cell cycle progression and polar body extrusion. ROCK inhibition also resulted in decreased cortical actin, p-cofilin, and p-MLC levels. Similar to the phenotype associated with inhibition of ROCK activity, inhibition of MLC kinase by the chemical inhibitor ML-7 caused defects in polar body extrusion. Collectively, our results suggest that the ROCK/MLC/actomyosin as well as ROCK/LIMK/cofilin pathways regulate meiotic spindle migration and cytokinesis during bovine oocyte maturation.


Asunto(s)
Factores Despolimerizantes de la Actina/metabolismo , Meiosis/fisiología , Cadenas Ligeras de Miosina/metabolismo , Oocitos/metabolismo , Transducción de Señal/fisiología , Quinasas Asociadas a rho/metabolismo , Animales , Bovinos , Citocinesis/fisiología , Oocitos/citología , Fosforilación/fisiología , Huso Acromático/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...