Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Virol J ; 21(1): 86, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622686

RESUMEN

BACKGROUND: Viruses have notable effects on agroecosystems, wherein they can adversely affect plant health and cause problems (e.g., increased biosecurity risks and economic losses). However, our knowledge of their diversity and interactions with specific host plants in ecosystems remains limited. To enhance our understanding of the roles that viruses play in agroecosystems, comprehensive analyses of the viromes of a wide range of plants are essential. High-throughput sequencing (HTS) techniques are useful for conducting impartial and unbiased investigations of plant viromes, ultimately forming a basis for generating further biological and ecological insights. This study was conducted to thoroughly characterize the viral community dynamics in individual plants. RESULTS: An HTS-based virome analysis in conjunction with proximity sampling and a tripartite network analysis were performed to investigate the viral diversity in chunkung (Cnidium officinale) plants. We identified 61 distinct chunkung plant-associated viruses (27 DNA and 34 RNA viruses) from 21 known genera and 6 unclassified genera in 14 known viral families. Notably, 12 persistent viruses (7 DNA and 5 RNA viruses) were exclusive to dwarfed chunkung plants. The detection of viruses from the families Partitiviridae, Picobirnaviridae, and Spinareoviridae only in the dwarfed plants suggested that they may contribute to the observed dwarfism. The co-infection of chunkung by multiple viruses is indicative of a dynamic and interactive viral ecosystem with significant sequence variability and evidence of recombination. CONCLUSIONS: We revealed the viral community involved in chunkung. Our findings suggest that chunkung serves as a significant reservoir for a variety of plant viruses. Moreover, the co-infection rate of individual plants was unexpectedly high. Future research will need to elucidate the mechanisms enabling several dozen viruses to co-exist in chunkung. Nevertheless, the important insights into the chunkung virome generated in this study may be relevant to developing effective plant viral disease management and control strategies.


Asunto(s)
Coinfección , Enanismo , Virus de Plantas , Virus ARN , Humanos , Viroma , Ecosistema , Cnidium/genética , ARN Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Virus de Plantas/genética , ADN , Filogenia
2.
Microbiol Resour Announc ; 13(1): e0094823, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38117064

RESUMEN

In this study, the presence of tulip virus X (TVX) in Korean tulips was confirmed through high-throughput RNA sequencing. Its complete genome sequence of 6,056 nucleotides was determined via Sanger sequencing, exhibiting a 99.24% nucleotide identity with TVX-J isolate. This signifies a previously unreported presence of TVX outside Japan.

3.
Microbiol Resour Announc ; 12(11): e0083723, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37905825

RESUMEN

Soybean yellow mottle mosaic virus (SYMMV), a member of the genus Gammacarmovirus, remains poorly understood in terms of its transmission pathway. This study reveals the complete genome sequence of a seed-transmitted isolate, ST-HB56, contributing to the understanding of SYMMV's ecological dynamics.

4.
Microbiol Resour Announc ; 12(10): e0055323, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37754558

RESUMEN

Soybean geminivirus A (SGVA), a member of the family Geminiviridae, was detected in a survey of early-stage soybean. The complete genome sequence of SGVA isolate Habin was determined, revealing its characteristics and similarity to Korean and Chinese isolates. This study contributes to understanding the impact of SGVA on soybean production.

5.
Arch Virol ; 168(7): 197, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37392254

RESUMEN

A novel umbra-like virus was identified in arborvitae in South Korea using RNA sequencing (RNA-seq). The virus identified was tentatively named "arborvitae umbra-like virus" (AULV) and contained a 4,300-nucleotide genome organized into four non-structural open reading frames (ORFs). Cloning and Sanger sequencing were used to confirm the viral contig sequence and determine the size of the genome. Genome analysis indicated that ORF2 encodes an RNA-dependent RNA polymerase that is probably expressed through ribosomal frameshifting. ORF3 encodes a putative long-distance movement protein, while the functions of ORFs 1 and 4 are unknown. The virus lacks a coat protein gene. The genome of AULV shares 27.3%-48.4% nucleotide sequence identity with closely related umbraviruses. Phylogenetic analysis based on the complete genome sequences and amino acid sequences of the RNA-dependent RNA polymerase revealed that AULV forms a monophyletic lineage with Guiyang paspalum paspaloides tombus-like virus (GPpTV1). We suggest that AULV is a novel umbra-like virus belonging to the family Tombusviridae.


Asunto(s)
Thuja , Tombusviridae , Umbridae , Animales , Filogenia , China , República de Corea , ARN Polimerasa Dependiente del ARN/genética
6.
Arch Virol ; 168(6): 170, 2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37243778

RESUMEN

High-throughput sequencing identified a cytorhabdovirus, tentatively named "cnidium virus 2" (CnV2), in Cnidium officinale, and Sanger sequencing confirmed the genome sequence. CnV2 is 13,527 nucleotides in length and contains seven open reading frames in the order 3'-N-P-3-4-M-G-L-5', separated by intergenic regions. The full-length nucleotide sequence of CnV2 shares 19.4-53.8% identity with other known cytorhabdovirus genome sequences. The N, P, P3, M, G, and L proteins share 15.8-66.7%, 11-64.3%, 11.1-80.5%, 10.8-75.3%, 12.3-72.1%, and 20-72.7% amino acid sequence identity, respectively, with the cognate deduced protein sequences from known cytorhabdoviruses. CnV2 is related to other members of the genus Cytorhabdovirus, with sambucus virus 1 being the closest relative. Thus, CnV2 should be classified as a new member in the genus Cytorhabdovirus of the family Rhabdoviridae.


Asunto(s)
Cnidium , Rhabdoviridae , Genoma Viral , Rhabdoviridae/genética , Proteínas Virales/genética , Secuencia de Aminoácidos , Sistemas de Lectura Abierta , Filogenia , Enfermedades de las Plantas , ARN Viral/genética
7.
Plant Dis ; 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37194209

RESUMEN

Tulip cultivation in Korea primarily uses imported bulbs due to the absence of domestic production. To ensure safety and sustainability, Korean authorities have implemented strict phytosanitary measures for five viruses: arabis mosaic virus, tobacco necrosis virus, tobacco ringspot virus, tomato black ring virus, and tomato bushy stunt virus. In April 2021, 86 tulip plants presented symptoms such as chlorotic mottle, mosaic, streak, stripe, yellowing of the leaves, and color breaking on flowers. These samples were collected to investigate the incidence of viruses in four Korean provinces (Gangwon, Gyeongbuk, Gyeongnam, and Chungnam). The leaves and petals from each individual sample (10 mg each) were pooled and ground using liquid nitrogen. Total RNA was extracted using a Maxwell® 16 LEV Plant RNA Kit (Promega, Madison, USA). A cDNA library was constructed using TruSeq Standard Total RNA with Ribo - Zero (Illumina, San Diego, USA) and sequenced on an Illumina NovaSeq 6000 platform (Macrogen, Seoul, Korea) with 100-bp paired-end reads. Trinity software identified tulip breaking virus (TBV), tulip virus X (TVX), and lily symptomless virus (LSV), which are known to occur in Korea (Bak et al. 2023) by de novo assembly of 628 million reads into 498,795 contigs. The contigs were annotated as previously described (Bak et al. 2022). Moreover, a contig (ON758350) related to olive mild mosaic virus (OMMV; genus Alphanecrovirus, family Tombusviridae) was identified through BLASTn analysis. This contig had a 99.27% nucleotide (nt) identity to OMMV PPO-L190209 (KU641010), which was assembled from 201,346 reads and spanned 3,713 bp. To confirm the presence of OMMV, a primer pair (5'-GAATGTCTGGCGTTAAGCG-3'/5'-GTGTCCTGCGCATCATACAC-3') was designed to amplify a 797-bp fragment of the coat protein gene. In RT-PCR, 31.4% (27/86) of samples were positive for OMMV and coinfected with TBV or TBV+LSV. Coinfection with TBV led to chlorotic mottling and stripes, whereas triple coinfection with TBV+LSV produced distinct yellow streaks and mosaic within the lesion boundaries. In contrast, solely TBV infection did not produce such symptoms. The samples infected with OMMV were exclusively collected from Gangwon and Gyeongnam. In each province, an RT-PCR amplicon was cloned, and subsequently sequenced (Bioneer, Daejeon, Korea). The obtained sequences were named CC (OM243091) and GS (OM243092), and they shared 98.6% and 98.9% identity with PPO-L190209 (KU641010), respectively. A bioassay was conducted using a leaf infected with OMMV CC and TBV to inoculate 13 indicator species in triplicate, including Capsicum annuum, Chenopodium amaranticolor, C. quinoa, Cucumis sativus, Nicotiana benthamiana, N. clevelandii, N. glutinosa, N. occidentalis, N. rustica, N. tabacum, Solanum lycopersicum, Tetragonia tetragonioides, and Tulipa gesneriana. The RT-PCR revealed positivity only for OMMV in the upper leaves of N. clevelandii, while all other species were negative with no symptoms. To our knowledge, this is the first report of OMMV occurring in tulips grown from imported bulbs in Korea, with no other known natural hosts such as olive tree (Cardoso et al. 2004), spinach (Gratsia et al. 2012), and corn salad (Verdin et al. 2018). The Korean OMMV isolates exhibited a high nt identity with the foreign isolate, and the samples were collected from farms that rely entirely on bulb imports for cultivation. These suggest that the outbreak of OMMV was likely caused by imported bulbs.

8.
Arch Virol ; 168(4): 117, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36947325

RESUMEN

The currently named gerbera virus A (GeVA) has been shown to be a novel capillovirus with a complete genome of 6929 nucleotides (nt) (GenBank accession no. OM525829.1). GeVA was detected in Gerbera jamesonii using high-throughput RNA sequencing analysis. The GeVA genome is a single linear RNA with two open reading frames (ORF), similar to those of other capilloviruses. The larger ORF encodes a polyprotein containing four domains, while the smaller ORF encodes a movement protein. The complete genome had 41.0-54.9% nt sequence identity to other those of capilloviruses, while the polyprotein and the movement protein had 26.5-36.4% and 13.1-32.2% amino acid (aa) sequence identity, respectively. Two UUAGGU promoters for subgenomic RNA (sgRNA) transcription were also identified in this study. BLAST analysis demonstrated that the GeVA genome shared the highest sequence similarity with rubber tree capillovirus 1 (MN047299.1) (complete nucleotide sequence identity, 68.54%; polyprotein amino acid sequence identity, 44.53%). Phylogenetic analysis based on complete genome and replication protein sequences placed GeVA alongside other members of the genus Capillovirus in the family Betaflexiviridae. These data suggest that GeVA is a new member of the genus Capillovirus.


Asunto(s)
Flexiviridae , Secuencia de Aminoácidos , Flexiviridae/genética , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , ARN Viral/genética , ARN Subgenómico
9.
Arch Virol ; 168(4): 104, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36892625

RESUMEN

The complete genome sequence of a novel virus found infecting Cnidium officinale, which we have named "cnidium polerovirus 1" (CnPV1), is 6,090 nucleotides in length, similar to those of other poleroviruses. Seven open reading frames (ORF0-5 and ORF3a) were predicted in this genome. CnPV1 shares 32.4%-38.9% full-length nucleotide sequence identity with other known polerovirus genome sequences. The putative P0, P1-2, P3-5, P3, and P4 proteins share 11.3%-19.5%, 37.1%-49.8%, 26.7%-39.5%, 40.8%-49.7%, and 40.8%-49.7% amino acid sequence identity, respectively, with homologous inferred protein sequences from known poleroviruses. Phylogenetic analysis of P1-2 and P3 sequences places CnPV1 with other members of the genus Polerovirus, indicating that it should be classified in a new distinct species.


Asunto(s)
Genoma Viral , Luteoviridae , Cnidium , Luteoviridae/genética , Filogenia , Enfermedades de las Plantas , Sistemas de Lectura Abierta , República de Corea , ARN Viral/genética
10.
Microbiol Resour Announc ; 12(1): e0090222, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36475761

RESUMEN

We determined the whole-genome sequences of two apple stem grooving viruses (ASGV) detected in infected Cnidium officinale plants. The analyzed ASGV genomes were 6,494 nucleotides long and encoded two overlapping open reading frames. Phylogenetic analysis revealed the two ASGV isolates to be most closely related to the ASGV isolate Xinjiang-3.

11.
Inorg Chem ; 61(48): 19058-19066, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36414026

RESUMEN

We report the successful growth of high-quality single crystals of Sr0.94Mn0.86Te1.14O6 (SMTO) using a self-flux method. The structural, electronic, and magnetic properties of SMTO are investigated by neutron powder diffraction (NPD), single-crystal X-ray diffraction (SCXRD), thermodynamic, and nuclear magnetic resonance techniques in conjunction with density functional theory calculations. NPD unambiguously determined octahedral (trigonal antiprismatic) coordination for all cations with the chiral space group P312 (no. 149), which is further confirmed by SCXRD data. The Mn and Te elements occupy distinct Wyckoff sites, and minor anti-site defects were observed in both sites. X-ray photoelectron spectroscopy reveals the existence of mixed valence states of Mn in SMTO. The magnetic susceptibility and specific heat data evidence a weak antiferromagnetic order at TN = 6.6 K. The estimated Curie-Weiss temperature θCW = -21 K indicates antiferromagnetic interaction between Mn ions. Furthermore, both the magnetic entropy and the 125Te nuclear spin-lattice relaxation rate showcase that short-range spin correlations persist well above the Néel temperature. Our work demonstrates that Sr0.94(2)Mn0.86(3)Te1.14(3)O6 single crystals realize a noncentrosymmetric triangular antiferromagnet.

12.
Plant Dis ; 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35666217

RESUMEN

Tulip virus X (tulip virus X, TVX) is a member of the genus Potexvirus (family Alphaflexiviridae) and is a positive single-stranded RNA virus. TVX was described first in Scotland (Mowat 1982), followed by several countries (Yamaji et al. 2001; Tzanetakis et al. 2005; Ward et al. 2008; Dees et al. 2011; Sochacki and Komorowska 2012; Wylie et al. 2019). In April 2021, 86 whole tulip plants showing viral symptoms in leaves (mosaic, yellowing, and malformation) and flowers (color breaking) were collected in Chilgok, Chuncheon, Goseong, Yecheon and Yesan, Korea. Furthermore, high-throughput sequencing was performed to identify viruses that infect tulips in Korea. Total RNA was extracted from pooled the leaves and petals using a Maxwell® 16 LEV Plant RNA Kit (Promega, Madison, USA). We constructed a single library using the TruSeq Stranded Total RNA LT Sample Prep Kit for Plant (Illumina, San Diego, USA). The library was 100 bp paired-end sequenced using Illumina's NovaSeq 6000 (Macrogen, Seoul, Korea) and was assembled de novo using Trinity software version trinityrnaseq_r20140717, with default parameters. The contigs were annotated as in previous study (Lee et al. 2020), revealing a single contig each related to TVX, lily symptomless virus (LSV), and tulip breaking virus (TBV) was generated from 648 million total reads. The TVX-related contig (GenBank ON205948) consisting of 6,076 bp showed 99.52% nucleotide identity (6027/6056 bp) with TVX-J (GenBank AB066288). We conducted an RT-PCR assay to validate the presence of viruses with specific primers as TVX-F5093/R5624 (5'-CTATCCGGACTCATTCTACTTC/GTGCGTTCCAGATAAGCTTG-3'), LSV-F7013/R7338 (5'-CTTGGTCGACAGGGACATAAC/GATTGGAATTGTGCTTTTCAGC-3'), and TBV-F7515/R8116 (5'-GTGTGTCATGGATGATTGTTG/CAACTGATTTGCTACCGCTAG-3'). Consequently, TVX were detected in 13 of 86 samples. Moreover, LSV and TBV were detected in 15 and 26 samples, respectively. However, the yellowing and mosaic observed in the TVX infected samples were not observed in the LSV and TBV infected samples. Subsequently, two TVX amplicons were selected, cloned and sequenced. The obtained sequences were 532 bp and were named YS24 and YS38 (GenBank LC664027 and LC664028), respectively. The Korean isolates showed 98.68% (525/532 bp) and 99.62% (530/532 bp) identity with Australian isolate (GenBank MH886522) in BLASTn analysis. To bioassay for TVX, the infected tulip leaf tissue from which YS24 was obtained was used to sap-inoculate, in triplicates, 15 species of indicator plants (Nicotiana benthamiana, N. clevelandii, N. debneyi, N. glutinosa, N. rustica, N. tabacum, Datura stramonium, Glycine max, Phaseolus vulgaris, Chenopodium amaranticolor, C. quinoa, Cucumis sativus, Cu. melo, Gomphrena globosa, and Tetragonia tetragonioides). After 14 days of inoculation, we observed distinct chlorotic spots on inoculated and upper leaves of C. quinoa, but no symptoms were observed in other indicator plants. In RT-PCR assay using TVX-specific primers, only C. quinoa showed a positive reaction. In previous studies, C. amaranticolor, C. quinoa, G. globosa, and N. benthamiana were known as the experimental host of TVX (Dees et al. 2011; Tzanetakis et al. 2005), but only C. quinoa was confirmed to be susceptible to the Korean isolate. Furthermore, transmission electron microscopy revealed typical flexuous rod-shaped viral particles in the inoculated C. quinoa. To our knowledge, this is the first report of TVX infecting tulips in Korea.

13.
Inorg Chem ; 61(24): 9257-9268, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35670559

RESUMEN

We report the synthesis and characterization of a series of new open-framework iron fluoride-fluorophosphates based on linear, trinuclear, and tetranuclear chain FeIII building units. KFe2(PO3F)2F3 (I) consists of {Fe2(O3F)2F2}10- zigzag chains interconnected by P(O/F)4 tetrahedra forming a three-dimensional (3D) open framework. K2Fe(PO2.5F1.5)2F2 (II) is built up by {Fe(PO2.5F1.5)2F2}2- chains separated by K+ cation layers. The framework for K3Fe3(PO4)(PO3F)2F5 (III) contains two-dimensional {Fe3O4F4(PO3F)2}2- sheets, which are built from trimeric Fe-octahedra insulated by PO3F tetrahedra. The macroanionic framework of K3Fe4(PO4)2F9 (IV) comprises linear {Fe4O8F9}10- chains consisting of tetranuclear magnetic clusters of [Fe4O8F9]10- formed via corner-sharing fluorine atoms decorated with PO4 groups. The magnetic characterization of three iron fluorophosphates reveals diversified magnetism: S = 5/2 spin chains for I, antiferromagnetically coupled triangular Fe units for III, and coupled tetrahedral S = 5/2 spin chains for IV. IV shows strong geometric frustration thanks to its spin motifs of corner-shared tetrahedral clusters.

14.
Arch Virol ; 167(3): 973-977, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35112199

RESUMEN

The complete genomic sequence of a plant rhabdovirus that was identified in Cnidium officinale in Yeongyang-dun, South Korea, is reported here. The virus, tentatively named "cnidium virus 1" (CnV1), has a negative-sense RNA genome of ~ 14 kb, and its organization most closely resembles that of unsegmented plant rhabdoviruses, containing six antisense open reading frames (ORFs) in the order 3'-N-P-P3-M-G-L-5'. Intergenic regions containing conserved sequences separate the genes. The genome of CnV1 is 37.8-56% identical in its complete nucleotide sequence to betanucleorhabdoviruses and other related rhabdoviruses. Therefore, based on the sequence similarity criteria for species demarcation, its genome organization, and its phylogenetic position, CnV1 should be classified as a new member of the genus Betanucleorhabdovirus in the family Rhabdoviridae. CnV1 is the first rhabdovirus found in C. officinale.


Asunto(s)
Cnidium , Rhabdoviridae , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , Enfermedades de las Plantas , ARN Viral/genética , Rhabdoviridae/genética
15.
Nat Commun ; 12(1): 6453, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34753923

RESUMEN

Anisotropic triangular antiferromagnets can host two primary spin excitations, namely, spinons and triplons. Here, we utilize polarization-resolved Raman spectroscopy to assess the statistics and dynamics of spinons in Ca3ReO5Cl2. We observe a magnetic Raman continuum consisting of one- and two-pair spinon-antispinon excitations as well as triplon excitations. The twofold rotational symmetry of the spinon and triplon excitations are distinct from magnons. The strong thermal evolution of spinon scattering is compatible with the bosonic spinon scenario. The quasilinear spinon hardening with decreasing temperature is envisaged as the ordering of one-dimensional topological defects. This discovery will enable a fundamental understanding of novel phenomena induced by lowering spatial dimensionality in quantum spin systems.

16.
ACS Appl Mater Interfaces ; 13(37): 45097-45104, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34496563

RESUMEN

A recent study found that magnetization curves for Y3Fe5O12 (YIG) slab and thick films (>20 µm thick) differed from bulk system curves by their longitudinal spin Seebeck effect in a Pt/YIG bilayer system. The deviation was due to intrinsic YIG surface magnetic anisotropy, which is difficult to adopt extrinsic surface magnetic anisotropy even when in contact with other materials on the YIG surface. This study experimentally demonstrates evidence for extrinsic YIG surface magnetic anisotropy when in contact with a diamagnetic graphene interlayer by observing the spin Seebeck effect, directly proving intrinsic YIG surface magnetic anisotropy interruption. We show the Pt/YIG bilayer system graphene interlayer role using large area single and multilayered graphenes using the longitudinal spin Seebeck effect at room temperature, and address the presence of surface magnetic anisotropy due to magnetic proximity between graphene and YIG layer. These findings suggest a promising route to understand new physics of spin Seebeck effect in spin transport.

17.
Inorg Chem ; 60(17): 13707-13717, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34380318

RESUMEN

Three new alkali-metal manganese fluoride selenates, A2Mn(SeO4)F3 (A = K, Rb, Cs), were prepared through hydrothermal redox reactions. The products consisted of one-dimensional polymeric anionic ∞[Mn(SeO4)F3]2- chains, where the A+ cations are connected by O and/or F atoms to form blocks with two-dimensional layers. A2Mn(SeO4)F3 (A= Rb, Cs) is isostructural with the monoclinic space group P21/c, while K2Mn(SeO4)F3 crystallizes in the orthorhombic space group Pbcn. A2Mn(SeO4)F3 (A = K, Rb, Cs) forms spin chains of Mn3+ with different Mn-F-Mn bridges, which showed canting antiferromagnetic behaviors. Single-crystal magnetic measurements revealed that the magnetic moments of the Mn ions were more canted for larger alkali-metal compounds in an antiferromagnetically ordered state.

18.
Plant Pathol J ; 37(3): 258-267, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34111915

RESUMEN

Asian pear (Pyrus pyrifolia) is a widely cultivated and commercially important fruit crop, which is occasionally subject to severe economic losses due to latent viral infections. Thus, the aim of the present study was to examine and provide a comprehensive overview of virus populations infecting a major pear cultivar ('Singo') in Korea. From June 2017 to October 2019, leaf samples (n = 110) of pear trees from 35 orchards in five major pear-producing regions were collected and subjected to RNA sequencing. Most virus-associated contigs matched the sequences of known viruses, including apple stem grooving virus (ASGV) and apple stem pitting virus (ASPV). However, some contigs matched the sequences of apple green crinkle-associated virus and cucumber mosaic virus. In addition, three complete or nearly complete genomes were constructed based on transcriptome data and subjected to phylogenetic analyses. Based on the number of virus-associated reads, ASGV and ASPV were identified as the dominant viruses of 'Singo.' The present study describes the virome of a major pear cultivar in Korea, and looks into the diversity of viral communities in this cultivar. This study can provide valuable information on the complexity of genetic variability of viruses infecting pear trees.

19.
Plant Pathol J ; 36(6): 643-650, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33312100

RESUMEN

Korean ginseng (Panax ginseng) is a dicotyledonous, medicinal, perennial plant belonging to the genus Panax of the family Araliaceae. We investigated the occurrence and incidence of plant viruses in Panax ginseng in Korea. A total of 656 leaf samples were combined into one and total RNA was extracted from the polled sample, using RNA sequencing (RNA-Seq), a metatranscriptome analysis of the plant virome was conducted. The virus present in Panax ginseng was confirmed by reverse transcription polymerase chain reaction (RT-PCR) assay using virus-specific primers. In RNA-Seq data analysis, the multiplication protein of four viral contigs including Aristotelia chilensis virus 1 (AcV1), Turnip mosaic virus (TuMV), Watermelon mosaic virus (WMV), and Tobamovirus multiplication protein were discovered. From our metatranscriptome analysis and RT-PCR assay, TuMV and WMV were detected, whereas the three viruses reported in China such as tomato yellow leaf curl China virus; panax notoginseng virus A; and panax virus Y were not found in this study. The distribution of domestic ginseng viruses seems different from that recorded in China. Overall, this is the first plant virome analysis of Panax ginseng in Korea.

20.
Arch Virol ; 165(11): 2695-2698, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32845374

RESUMEN

The complete genomic sequence of achyranthes virus A (AcVA), from an Achyranthes bidentata Blume plant in South Korea, was determined. The genomic RNA has 9491 nucleotides (nt), excluding the 3'-terminal poly(A) tail and contains an open reading frame typical of members of the genus Potyvirus, family Potyviridae, encoding a large putative polyprotein of 3103 amino acids (aa). Pairwise comparisons showed that the AcVA sequence shares 47.81-57.78% nt sequence identity at the complete genome level, 41.89-56.41% aa sequence identity at the polyprotein level, and 50-63.8% aa sequence identity at the coat protein level with other members of genus Potyvirus. These pairwise comparison values are below the species demarcation cutoff for the family Potyviridae. Our results therefore suggest that this virus should be regarded as a novel member of the genus Potyvirus, tentatively named "achyranthes virus A".


Asunto(s)
Achyranthes/virología , Genoma Viral , Filogenia , Enfermedades de las Plantas/virología , Potyvirus/genética , Secuencia de Aminoácidos , Sistemas de Lectura Abierta , Potyvirus/aislamiento & purificación , ARN Viral/genética , República de Corea , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...