Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 15(10): 3408-3427, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38455013

RESUMEN

It is now evident that the cell manipulates lipid composition to regulate different processes such as membrane protein insertion, assembly and function. Moreover, changes in membrane structure and properties, lipid homeostasis during growth and differentiation with associated changes in cell size and shape, and responses to external stress have been related to drug resistance across mammalian species and a range of microorganisms. While it is well known that the biomembrane is a fluid self-assembled nanostructure, the link between the lipid components and the structural properties of the lipid bilayer are not well understood. This perspective aims to address this topic with a view to a more detailed understanding of the factors that regulate bilayer structure and flexibility. We describe a selection of recent studies that address the dynamic nature of bacterial lipid diversity and membrane properties in response to stress conditions. This emerging area has important implications for a broad range of cellular processes and may open new avenues of drug design for selective cell targeting.

2.
Aust J Chem ; 76(8): 482-492, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37780415

RESUMEN

The intrinsic pathway of apoptosis is regulated by the Bcl-2 family of proteins. Inhibition of the anti-apoptotic members represents a strategy to induce apoptotic cell death in cancer cells. We have measured the membrane binding properties of a series of peptides, including modified α/ß-peptides, designed to exhibit enhanced membrane permeability to allow cell entry and improved access for engagement of Bcl-2 family members. The peptide cargo is based on the pro-apoptotic protein Bim, which interacts with all anti-apoptotic proteins to initiate apoptosis. The α/ß-peptides contained cyclic ß-amino acid residues designed to increase their stability and membrane-permeability. Dual polarisation interferometry was used to study the binding of each peptide to two different model membrane systems designed to mimic either the plasma membrane or the outer mitochondrial membrane. The impact of each peptide on the model membrane structure was also investigated, and the results demonstrated that the modified peptides had increased affinity for the mitochondrial membrane and significantly altered the structure of the bilayer. The results also showed that the presence of an RRR motif significantly enhanced the ability of the peptides to bind to and insert into the mitochondrial membrane mimic, and provide insights into the role of selective membrane targeting of peptides.

3.
Nanoscale ; 15(36): 14971-14980, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37661822

RESUMEN

Self-assembling lipopeptide hydrogels have been widely developed for the delivery of therapeutics due to their rapid gelation, injectability, and highly controlled physicochemical properties. Lipopeptides are also known for their membrane-associating and cell penetrating properties, which may impact on their application in cell-encapsulation. Self-assembling lipidated-ß3-peptide materials developed in our laboratory have previously been used in cell culture as 2D substrates, thus as a continuation of this work we aimed to encapsulate cells in 3D by forming a hydrogel. We therefore assessed the self-assembling lipidated-ß3-peptides for cell-penetrating properties in mesenchymal stems cells (MSC) using fluorescence microscopy and membrane association with surface plasmon resonance spectroscopy (SPR). The results demonstrated that lipidated ß3-peptides penetrate the MSC plasma membrane and localise to the mitochondrial network. While self-assembling lipopeptide hydrogels have shown tremendous potential for delivery of therapeutics, further optimisation may be required to minimise the membrane uptake of the lipidated-ß3-peptides for cell encapsulation applications.


Asunto(s)
Técnicas de Cultivo de Célula , Lipopéptidos , Transporte Biológico , Membrana Celular , Hidrogeles
4.
ACS Bio Med Chem Au ; 2(4): 395-408, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35996474

RESUMEN

The mycobacterial cell envelope has spatially resolved inner and outer membrane layers with distinct compositions and membrane properties. However, the functional implication and relevance of this organization remain unknown. Using membrane biophysics and molecular simulations, we reveal a varied interaction profile of these layers with antibiotic Rifabutin, underlined by the structural and chemical makeup of the constituent lipids. The mycobacterial inner membrane displayed the highest partitioning of Rifabutin, which was located exclusively in the lipid head group/interfacial region. In contrast, the drug exhibited specific interaction sites in the head group/interfacial and hydrophobic acyl regions within the outer membrane. Altogether, we show that the design of membrane-active agents that selectively disrupt the mycobacterial outer membrane structure can increase drug uptake and enhance intracellular drug concentrations. Exploiting the mycobacterium-specific membrane-drug interaction profiles, chemotypes consisting of outer membrane-disruptive agents and antitubercular drugs can offer new opportunities for combinational tuberculosis (TB) therapy.

5.
Metabolites ; 12(2)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35208246

RESUMEN

As an adaptive survival response to exogenous stress, bacteria undergo dynamic remodelling of their lipid metabolism pathways to alter the composition of their cellular membranes. Here, using Escherichia coli as a well characterised model system, we report the development and application of a 'multi-omics' strategy for comprehensive quantitative analysis of the temporal changes in the lipidome and proteome profiles that occur under exponential growth phase versus stationary growth phase conditions i.e., nutrient depletion stress. Lipidome analysis performed using 'shotgun' direct infusion-based ultra-high resolution accurate mass spectrometry revealed a quantitative decrease in total lipid content under stationary growth phase conditions, along with a significant increase in the mol% composition of total cardiolipin, and an increase in 'odd-numbered' acyl-chain length containing glycerophospholipids. The inclusion of field asymmetry ion mobility spectrometry was shown to enable the enrichment and improved depth of coverage of low-abundance cardiolipins, while ultraviolet photodissociation-tandem mass spectrometry facilitated more complete lipid structural characterisation compared with conventional collision-induced dissociation, including unambiguous assignment of the odd-numbered acyl-chains as containing cyclopropyl modifications. Proteome analysis using data-dependent acquisition nano-liquid chromatography mass spectrometry and tandem mass spectrometry analysis identified 83% of the predicted E. coli lipid metabolism enzymes, which enabled the temporal dependence associated with the expression of key enzymes responsible for the observed adaptive lipid metabolism to be determined, including those involved in phospholipid metabolism (e.g., ClsB and Cfa), fatty acid synthesis (e.g., FabH) and degradation (e.g., FadA/B,D,E,I,J and M), and proteins involved in the oxidative stress response resulting from the generation of reactive oxygen species during ß-oxidation or lipid degradation.

6.
Faraday Discuss ; 232(0): 399-418, 2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34558564

RESUMEN

The impact of maculatin 1.1 (Mac1) on the mechanical properties of supported lipid membranes derived from exponential growth phase (EGP) and stationary growth phase (SGP) E. coli lipid extracts was analysed by surface plasmon resonance and atomic force microscopy. Each membrane was analysed by quantitative nanomechanical mapping to derive measurements of the modulus, adhesion and deformation in addition to bilayer height. Image analysis revealed the presence of two domains in the EGP membrane differing in height by 0.4 nm. Three distinct domains were observed in the SGP membrane corresponding to 4.2, 4.7 and 5.4 nm in height. Using surface plasmon resonance, Mac1 was observed to bind strongly to both membranes and then disrupt the membranes as evidenced by a sharp drop in baseline. Atomic force microscopy (AFM) topographic analysis revealed the formation of domains of different height and confirmed that membrane destruction was much faster for the SGP derived bilayer. Moreover, Mac1 selectively disrupted the domain with the lowest thickness, which may correspond to a liquid ordered domain. Overall, the results provide insight into the role of lipid domains in the response of bacteria to antimicrobial peptides.


Asunto(s)
Escherichia coli , Péptidos , Antibacterianos/farmacología , Membrana Dobles de Lípidos , Lípidos , Microscopía de Fuerza Atómica
7.
Acta Biomater ; 126: 433-444, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33774200

RESUMEN

Glaucoma, a major cause of irreversible blindness worldwide, is associated with elevated intraocular pressure (IOP) and progressive loss of retinal ganglion cells (RGCs) that undergo apoptosis. A mechanism for RGCs injury involves impairment of neurotrophic support and exogenous supply of neurotrophic factors has been shown to be beneficial. However, neurotrophic factors can have widespread effects on neuronal tissues, thus targeting neurotrophic support to injured neurons may be a better neuroprotective strategy. In this study, we have encapsulated LM22A-4, a small neurotrophic factor mimetic, into Annexin V-conjugated cubosomes (L4-ACs) for targeted delivery to injured RGCs in a model of acute IOP elevation, which is induced by acute IOP elevation. We have tested cubosomes formulations that encapsulate from 9% to 33% LM22A-4. Our data indicated that cubosomes encapsulating 9% and 17% LM22A-4 exhibited a mixture of Pn3m/Im3m cubic phase, whereas 23% and 33% showed a pure Im3m cubic phase. We found that 17% L4-ACs with Pn3m/Im3m symmetries showed better in-situ and in-vitro lipid membrane interactions than the 23% and 33% L4-ACs with Im3m symmetry. In vivo experiments showed that 17% L4-ACs targeted the posterior retina and the optic nerve head, which prevented RGCs loss and improved functional outcomes in a mouse model of acute IOP elevation. These results provide evidence that Annexin V-conjugated cubosomes-based LM22A-4 delivery may be a useful targeted approach to prevent the progression of RGCs loss in glaucoma. STATEMENT OF SIGNIFICANCE: Recent studies suggest that the therapy of effectively delivering neurotrophic factors to the injured retinal ganglion cells (RGCs) could promote the survival of RGCs in glaucoma. Our present work has for the first time used cubosomes as an active targeted delivery system and have successfully delivered a neuroprotective drug to the damaged RGCs in vivo. Our new cubosomal formulation can protect apoptotic cell death in vitro and in vivo, showing that cubosomes are a promising drug carrier system for ocular drug delivery and glaucoma treatment. We have further found that by controlling cubosomes in Pn3m phase we can facilitate delivery of neuroprotective drug through apoptotic membranes. This data, we believe, has important implications for future design and formulation of cubosomes for therapeutic applications.


Asunto(s)
Glaucoma , Disco Óptico , Animales , Benzamidas , Modelos Animales de Enfermedad , Glaucoma/tratamiento farmacológico , Presión Intraocular , Ratones , Células Ganglionares de la Retina
8.
Int J Mol Sci ; 21(22)2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33207639

RESUMEN

Antimicrobial peptides (AMPs) often exhibit wide-spectrum activities and are considered ideal candidates for effectively controlling persistent and multidrug-resistant wound infections. PuroA, a synthetic peptide based on the tryptophan (Trp)-rich domain of the wheat protein puroindoline A, displays strong antimicrobial activities. In this work, a number of peptides were designed based on PuroA, varying in physico-chemical parameters of length, number of Trp residues, net charge, hydrophobicity or amphipathicity, D-versus L-isomers of amino acids, cyclization or dimerization, and were tested for antimicrobial potency and salt and protease tolerance. Selected peptides were assessed for effects on biofilms of methicillin-resistant Staphylococcus aureus (MRSA) and selected mammalian cells. Peptide P1, with the highest amphipathicity, six Trp and a net charge of +7, showed strong antimicrobial activity and salt stability. Peptides W7, W8 and WW (seven to eight residues) were generally more active than PuroA and all diastereomers were protease-resistant. PuroA and certain variants significantly inhibited initial biomass attachment and eradicated preformed biofilms of MRSA. Further, P1 and dimeric PuroA were cytotoxic to HeLa cells. The work has led to peptides with biocidal effects on common human pathogens and/or anticancer potential, also offering great insights into the relationship between physico-chemical parameters and bioactivities, accelerating progress towards rational design of AMPs for therapeutics.


Asunto(s)
Antineoplásicos , Biopelículas/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/fisiología , Proteínas Citotóxicas Formadoras de Poros , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Biopelículas/crecimiento & desarrollo , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Ratones , Células 3T3 NIH , Proteínas Citotóxicas Formadoras de Poros/síntesis química , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/farmacología , Ovinos
9.
Lab Chip ; 20(19): 3633-3643, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32901635

RESUMEN

Exosomes, a form of extracellular vesicle, are an important precursor in regenerative medicine. Microfluidic methods exist to capture these sub-micrometer sized objects from small quantities of sample, ideal for multiple diagnostic applications. To address the challenge of extraction from large volumes, we use the visual access offered by microfluidic techniques to probe the physical mechanisms behind a method which is compatible with future upscaling. The sound wave actuated nano-sieve uses resonant modes in a packed bed of microparticles to exert trapping forces on nanoparticles. Here, we examine the role of the microparticle size, demonstrating better performance from 15 µm particles than 7 µm particles. When applied to biological samples, we demonstrate for the first time that a packed bed of these larger particles is capable of capturing exosomes and liposomes, the captured particles being on average 20 to 40 times smaller than the pores within the trapped bed.


Asunto(s)
Exosomas , Nanopartículas , Liposomas , Sonido
10.
Front Chem ; 8: 217, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32296680

RESUMEN

ß3-peptides consisting exclusively of ß3-amino acids adopt a variety of non-natural helical structures and can self-assemble into well-defined hierarchical structures by axial head-to-tail self-assembly resulting in fibrous materials of varying sizes and shapes. To allow control of fiber morphology, a lipid moiety was introduced within a tri-ß3-peptide sequence at each of the three amino acid positions and the N-terminus to gain finer control over the lateral assembly of fibers. Depending on the position of the lipid, the self-assembled structures formed either twisted ribbon-like fibers or distinctive multilaminar nanobelts. The nanobelt structures were comprised of multiple layers of peptide fibrils as revealed by puncturing the surface of the nanobelts with an AFM probe. This stacking phenomenon was completely inhibited through changes in pH, indicating that the layer stacking was mediated by electrostatic interactions. Thus, the present study is the first to show controlled self-assembly of these fibrous structures, which is governed by the location of the acyl chain in combination with the 3-point H-bonding motif. Overall, the results demonstrate that the nanostructures formed by the ß3-tripeptide foldamers can be tuned via sequential lipidation of N-acetyl ß3-tripeptides which control the lateral interactions between peptide fibrils and provide defined structures with a greater homogeneous population.

11.
Curr Opin Chem Biol ; 52: 85-92, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31260926

RESUMEN

This review provides an analysis of the role that membrane composition and structure plays in the resistance of microorganisms to antimicrobial peptides (AMPs). We describe the current models of membrane disruption caused by AMPs and the changes in the structural properties that microbial membranes undergo in response to AMPs. This is followed by an outline of how the phospholipid composition of microbial membranes contributes to the changes in membrane bilayer structure and how the composition can be analysed in significant detail by modern lipidomic techniques. Finally, we discuss the challenges to fully analyse microbial membrane composition and structure that may occur during the development of resistance to AMPs.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Bacterias/metabolismo , Farmacorresistencia Bacteriana , Lipidómica , Péptidos Catiónicos Antimicrobianos/metabolismo , Membrana Celular/metabolismo , Unión Proteica
12.
Chem Rev ; 118(11): 5392-5487, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29793341

RESUMEN

The molecular analysis of biomolecular-membrane interactions is central to understanding most cellular systems but has emerged as a complex technical challenge given the complexities of membrane structure and composition across all living cells. We present a review of the application of surface plasmon resonance and dual polarization interferometry-based biosensors to the study of biomembrane-based systems using both planar mono- or bilayers or liposomes. We first describe the optical principals and instrumentation of surface plasmon resonance, including both linear and extraordinary transmission modes and dual polarization interferometry. We then describe the wide range of model membrane systems that have been developed for deposition on the chips surfaces that include planar, polymer cushioned, tethered bilayers, and liposomes. This is followed by a description of the different chemical immobilization or physisorption techniques. The application of this broad range of engineered membrane surfaces to biomolecular-membrane interactions is then overviewed and how the information obtained using these techniques enhance our molecular understanding of membrane-mediated peptide and protein function. We first discuss experiments where SPR alone has been used to characterize membrane binding and describe how these studies yielded novel insight into the molecular events associated with membrane interactions and how they provided a significant impetus to more recent studies that focus on coincident membrane structure changes during binding of peptides and proteins. We then discuss the emerging limitations of not monitoring the effects on membrane structure and how SPR data can be combined with DPI to provide significant new information on how a membrane responds to the binding of peptides and proteins.


Asunto(s)
Membrana Celular/química , Interferometría/métodos , Membrana Dobles de Lípidos/química , Liposomas/química , Resonancia por Plasmón de Superficie/métodos , Técnicas Biosensibles/métodos , Proteínas de la Membrana/química , Péptidos/química
13.
Biochim Biophys Acta Biomembr ; 1860(2): 300-309, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29030245

RESUMEN

Antimicrobial peptides (AMPs) interact directly with bacterial membrane lipids. Thus, changes in the lipid composition of bacterial membranes can have profound effects on the activity of AMPs. In order to understand the effect of bilayer thickness and molecular order on the activity of AMPs, the interaction of maculatin 1.1 (Mac1.1) with phosphatidylcholine (PC) model membranes composed of different monounsaturated acyl chain lengths between 14 and 22 carbons was characterised by dual polarisation interferometry (DPI) and 31P and 1H solid-state NMR techniques. The thickness and bilayer order of each PC bilayer showed a linear dependence on the acyl chain length. The binding of Mac1.1 exhibited a biphasic dependency between the amount of bound Mac1.1 and bilayer thickness, whereby the mass of bound peptide increased from C14 to C16 and then decreased from C16 to C22. Significant perturbation of 31P chemical shift anisotropy (CSA) values was only observed for DOPC (C18) and DEPC (C22), respectively. In the case of DEPC, the greater range in CSA indicated different headgroup conformations or environments in the presence of Mac1.1. Overall, the results indicated that there is a significant change in the bilayer order upon binding of Mac1.1 and this change occurred in a co-operative manner at higher concentrations of Mac1.1 with increasing bilayer thickness and order. Overall, an optimum bilayer thickness and lipid order may be required for effective membrane perturbation by Mac1.1 and increasing the bilayer thickness and order may counteract the activity of Mac1.1 and play a role in antimicrobial resistance to AMPs.


Asunto(s)
Proteínas Anfibias/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Membrana Dobles de Lípidos/metabolismo , Fosfatidilcolinas/metabolismo , Secuencia de Aminoácidos , Proteínas Anfibias/química , Péptidos Catiónicos Antimicrobianos/química , Interferometría/métodos , Cinética , Membrana Dobles de Lípidos/química , Espectroscopía de Resonancia Magnética , Fosfatidilcolinas/química , Fosfolípidos/química , Fosfolípidos/metabolismo , Unión Proteica
14.
Biophys Rev ; 9(4): 443-457, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28823106

RESUMEN

Apoptosis is important in regulating cell death turnover and is mediated by the intrinsic and death receptor-based extrinsic pathways which converge at the mitochondrial outer membrane (MOM) leading to mitochondrial outer membrane permeabilization (MOMP). MOMP results in the release of apoptotic proteins that further activate the downstream pathway of apoptosis. Thus, tight regulation of MOMP is crucial in controlling apoptosis, and a lack of control may lead to tissue and organ malformation and the development of cancers. Despite a growing number of studies focusing on the structure and activity of the proteins involved in mediating MOMP, such as the Bcl-2 family proteins, the mechanism of MOMP is not well understood. In particular, the crucial role of the various structural properties and changes in lipid components of the MOM in mediating the recruitment and activation of different Bcl-2 proteins remains poorly understood. Furthermore, the factors that control the changes in mitochondrial membrane integrity from the initiation to the final disruption of MOM have yet to be clearly defined. In this review, we provide an overview of studies that focus on the mitochondrial membrane with a biophysical analysis of the interactions of the Bcl-2 proteins with the mitochondrial membrane.

15.
Angew Chem Int Ed Engl ; 56(29): 8495-8499, 2017 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-28513074

RESUMEN

Δ-Myrtoxin-Mp1a (Mp1a), a 49-residue heterodimeric peptide from the venom of Myrmecia pilosula, comprises a 26-mer A chain and a 23-mer B chain connected by two disulfide bonds in an antiparallel arrangement. Combination of the individual synthetic chains through aerial oxidation remarkably resulted in the self-assembly of Mp1a as a homogenous product without the need for directed disulfide-bond formation. NMR analysis revealed a well-defined, unique structure containing an antiparallel α-helix pair. Dual polarization interferometry (DPI) analysis showed strong interaction with supported lipid bilayers and insertion within the bilayers. Mp1a caused non-specific Ca2+ influx in SH-SY5Y cells with a half maximal effective concentration (EC50 ) of 4.3 µm. Mp1a also displayed broad-spectrum antimicrobial activity, with the highest potency against Gram-negative Acinetobacter baumannii (MIC 25 nm). Intraplantar injection (10 µm) in mice elicited spontaneous pain and mechanical allodynia. Single- and two-chain mimetics of Mp1a revealed functional selectivity.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Hiperalgesia/tratamiento farmacológico , Dolor/tratamiento farmacológico , Péptidos/farmacología , Ponzoñas/química , Animales , Antibacterianos/administración & dosificación , Antibacterianos/química , Hormigas , Calcio/metabolismo , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Péptidos/administración & dosificación , Péptidos/química
16.
Biochim Biophys Acta ; 1858(8): 1841-9, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27163492

RESUMEN

We have studied the effect of penetratin and a truncated analogue on the bilayer structure using dual polarisation interferometry, to simultaneously measure changes in mass per unit area and birefringence (an optical parameter representing bilayer order) with high sensitivity during the binding and dissociation from the membrane. Specifically, we studied penetratin (RQIKIWFQNRRMKWKK), along with a shortened and biotinylated version known as R8K-biotin (RRMKWKKK(Biotin)-NH2). Overall both peptides bound only weakly to the neutral DMPC and POPC bilayers, while much higher binding was observed for the anionic DMPC/DMPG and POPC/POPG. The binding of penetratin to gel-phase DMPC/DMPG was adequately represented by a two-state model, whereas on the fluid-phase POPC/POPG it exhibited a distinctly different binding pattern, best represented by a three-state kinetic model. However, R8K-biotin did not bind well to DMPC/DMPG and showed a more transitory and superficial binding to POPC/POPG. Comparing the modelling results for both peptides binding to POPC/POPG suggests an important role for a securely bound intermediate prior to penetratin insertion and translocation. Overall these results further elucidate the mechanism of penetratin, and provide another example of the significance of the ability of DPI to measure structural changes and the use of kinetic analysis to investigate the stages of peptide-membrane interactions.


Asunto(s)
Péptidos de Penetración Celular/farmacología , Membrana Dobles de Lípidos/química , Secuencia de Aminoácidos , Biotinilación , Birrefringencia , Proteínas Portadoras/farmacología , Dimiristoilfosfatidilcolina/química , Geles , Interferometría , Cinética , Liposomas/química , Lípidos de la Membrana/química , Modelos Químicos , Fragmentos de Péptidos/farmacología , Fosfatidilcolinas/química , Fosfatidilgliceroles/química , Unión Proteica , Relación Estructura-Actividad
17.
J Biol Chem ; 291(22): 11829-42, 2016 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-27026701

RESUMEN

The µO-conotoxins MrVIA, MrVIB, and MfVIA inhibit the voltage-gated sodium channel NaV1.8, a well described target for the treatment of pain; however, little is known about the residues or structural elements that define this activity. In this study, we determined the three-dimensional structure of MfVIA, examined its membrane binding properties, performed alanine-scanning mutagenesis, and identified residues important for its activity at human NaV1.8. A second round of mutations resulted in (E5K,E8K)MfVIA, a double mutant with greater positive surface charge and greater affinity for lipid membranes compared with MfVIA. This analogue had increased potency at NaV1.8 and was analgesic in the mouse formalin assay.


Asunto(s)
Analgésicos/farmacología , Membrana Celular/metabolismo , Conotoxinas/farmacología , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Dolor/prevención & control , Secuencia de Aminoácidos , Animales , Conducta Animal/efectos de los fármacos , Cristalografía por Rayos X , Electrofisiología , Células HEK293 , Humanos , Liposomas , Espectroscopía de Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Canal de Sodio Activado por Voltaje NAV1.8/química , Canal de Sodio Activado por Voltaje NAV1.8/genética , Dolor/inducido químicamente , Conformación Proteica , Homología de Secuencia de Aminoácido
18.
Biochim Biophys Acta ; 1858(6): 1099-109, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26896695

RESUMEN

Plant defensins interact with phospholipids in bilayers as part of their cytotoxic activity. Solanaceous class II defensins with the loop 5 sequence pattern "S-[KR]-[ILVQ]-[ILVQ]-[KR]-[KR]" interact with PI(4,5)P2. Here, the prototypical defensin of this class, NaD1, is used to characterise the biophysical interactions between these defensins and phospholipid bilayers. Binding of NaD1 to bilayers containing PI(4,5)P2 occurs rapidly and the interaction is very strong. Dual polarisation interferometry revealed that NaD1 does not dissociate from bilayers containing PI(4,5)P2. Binding of NaD1 to bilayers with or without PI(4,5)P2 induced disorder in the bilayer. However, permeabilisation assays revealed that NaD1 only permeabilised liposomes with PI(4,5)P2 in the bilayer, suggesting a role for this protein-lipid interaction in the plasma membrane permeabilising activity of this defensin. No defensins in the available databases have the PI(4,5)P2 binding sequence outside the solanaceous class II defensins, leading to the hypothesis that PI(4,5)P2 binding co-evolved with the C-terminal propeptide to protect the host cell against the effects of the tight binding of these defensins to their cognate lipid as they travel along the secretory pathway. This data has allowed us to develop a new model to explain how this class of defensins permeabilises plasma membranes to kill target cells.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Lípidos de la Membrana/metabolismo , NADH Deshidrogenasa/fisiología , Fosfatidilinositol 4,5-Difosfato/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Membrana Dobles de Lípidos , Datos de Secuencia Molecular , NADH Deshidrogenasa/química , Unión Proteica , Homología de Secuencia de Aminoácido
19.
Curr Top Med Chem ; 16(1): 25-39, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26139112

RESUMEN

Antimicrobial peptides (AMPs) are showing increasing promise as potential candidate antibacterial drugs in the face of the rapidly emerging bacterial resistance to conventional antibiotics in recent years. The target of these peptides is the microbial membrane and there are numerous models to explain their mechanism of action ranging from pore formation to general membrane disruption. The interaction between the AMP and the target membrane is critical to the specificity and activity of these peptides. However, a precise understanding of the relationship between antimicrobial peptide structure and their cytolytic function in a range of organisms is still lacking. This is a result of the complex nature of the interactions of AMPs with the cell membrane, the mechanism of which can vary considerably between different classes of antimicrobia peptides. A wide range of biophysical techniques have been used to study the influence of a number of peptide and membrane properties on the cytolytic activity of these peptides in model membrane systems. Central to characterisation of this interaction is a quantitative analysis of the binding of peptide to the membrane and the coherent dynamic changes in membrane structure. Recently, dual polarization interferometry has been used to perform an in depth analysis of antimicrobial peptide induced membrane perturbation and with new mass-structure co-fitting kinetic analysis have allowed a real-time label free analysis of binding affinity and kinetics. We review these studies which describe multi-step mechanisms which are adopted by various AMPs in nature and may advance our approach to the development of a new generation of effective antimicrobial therapeutics.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Bacterias/citología , Bacterias/efectos de los fármacos , Membrana Dobles de Lípidos/química , Fosfolípidos/química , Pruebas de Sensibilidad Microbiana , Conformación Proteica
20.
Sci Rep ; 5: 9972, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26126083

RESUMEN

The carboxyl-terminus of the type 1 angiotensin II receptor (AT1A) regulates receptor activation/deactivation and the amphipathic Helix 8 within the carboxyl-terminus is a high affinity interaction motif for plasma membrane lipids. We have used dual polarisation interferometry (DPI) to examine the role of phosphatidylinositdes in the specific recognition of Helix 8 in the AT1A receptor. A synthetic peptide corresponding to Leu(305) to Lys(325) (Helix 8 AT1A) discriminated between PIPs and different charges on lipid membranes. Peptide binding to PtdIns(4)P-containing bilayers caused a dramatic change in the birefringence (a measure of membrane order) of the bilayer. Kinetic modelling showed that PtdIns(4)P is held above the bilayer until the mass of bound peptide reaches a threshold, after which the peptides insert further into the bilayer. This suggests that Helix 8 can respond to the presence of PI(4)P by withdrawing from the bilayer, resulting in a functional conformational change in the receptor.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Receptor de Angiotensina Tipo 1/química , Receptor de Angiotensina Tipo 1/metabolismo , Secuencia de Aminoácidos , Animales , Birrefringencia , Interferometría , Cinética , Análisis de los Mínimos Cuadrados , Modelos Moleculares , Datos de Secuencia Molecular , Peso Molecular , Péptidos/química , Estructura Secundaria de Proteína , Relación Estructura-Actividad , Sus scrofa , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...