Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 17(21): 21443-21454, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37857269

RESUMEN

Photolithography is a well-established fabrication method for realizing multilayer electronic circuits. However, it is challenging to adopt photolithography to fabricate intrinsically stretchable multilayer electronic circuits fully composed of an elastomeric matrix, due to the opacity of thick stretchable nanocomposite conductors. Here, we present photothermal lithography that can pattern elastomeric conductors and via holes using pulsed lasers. The photothermal-patterned stretchable nanocomposite conductor exhibits 3 times higher conductivity (5940 S cm-1) and 5 orders of magnitude lower resistance change (R/R0 = 40) under a 30% strained 5000th cyclic stretch, compared to those of a screen-printed conductor, based on the percolation network formed by spatial heating of the laser. In addition, a 50 µm sized stretchable via holes can be patterned on the passivation without material ablation and electrical degradation of the bottom conductor. By repeatedly patterning the conductor and via holes, highly conductive and durable multilayer circuits can be stacked with layer-by-layer material integration. Finally, a stretchable wireless pressure sensor and passive matrix LED array are demonstrated, thus showing the potential for a stretchable multilayer electronic circuit with durability, high density, and multifunctionality.

2.
ACS Appl Mater Interfaces ; 14(21): 24840-24849, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35584034

RESUMEN

Patterning elastomers is an essential process for the application of elastomers to stretchable bioelectric devices. In general, replication of a mold and laser ablation are used for patterning elastomers. However, these methods are inefficient and time consuming due to complex patterning procedures and a heat-induced curing mechanism. In this work, we developed a photopatternable elastomer called thiol-ene cross-linked poly(dimethylsiloxane) (TC-PDMS). TC-PDMS showed high-resolution patternability (∼100 µm) through a direct patterning process. It also had high stretchability (∼140%) and low Young's modulus (∼2.9 MPa) similar to conventional PDMS. To demonstrate its practicability in stretchable bioelectric devices, TC-PDMS was applied to a passivation layer of an intrinsically stretchable organic electrochemical transistor (OECT), which showed a low leakage current (∼20 µA) and a high transconductance (0.432 mS) at high strain (60%). The stretchable OECT was able to record electrocardiographic (ECG) signals from human skin, and the measured ECG signals exhibited a high signal-to-noise ratio of 12.2 dB.


Asunto(s)
Dimetilpolisiloxanos , Elastómeros , Módulo de Elasticidad , Humanos , Piel
3.
Sci Adv ; 7(48): eabi6290, 2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34826244

RESUMEN

Flexible microneedles are important tools that allow access to the inside of biological tissue from the outside without surgery. However, it had been hard to realize microneedle sensor arrays on flexible substrates because of the difficulty of attaining a needle with a high Young's modulus for a selected area on a thin or soft substrate. In this work, we developed a microneedle sensor on a hybrid substrate based on high Young's modulus epoxy siloxane for the microneedles and low Young's modulus polydimethylsiloxane for the conformable substrate. Polyaniline was deposited on the microneedle for pH sensing. The mechanical durability of the device was assessed by insertion into pig skin 1000 times. Last, the flexible microneedle pH sensors showed their utility for monitoring pH distribution in rats in a peripheral artery diseases model.

4.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34544852

RESUMEN

Electrode arrays are widely used for multipoint recording of electrophysiological activities, and organic electronics have been utilized to achieve both high performance and biocompatibility. However, extracellular electrode arrays record the field potential instead of the membrane potential itself, resulting in the loss of information and signal amplitude. Although much effort has been dedicated to developing intracellular access methods, their three-dimensional structures and advanced protocols prohibited implementation with organic electronics. Here, we show an organic electrochemical transistor (OECT) matrix for the intracellular action potential recording. The driving voltage of sensor matrix simultaneously causes electroporation so that intracellular action potentials are recorded with simple equipment. The amplitude of the recorded peaks was larger than that of an extracellular field potential recording, and it was further enhanced by tuning the driving voltage and geometry of OECTs. The capability of miniaturization and multiplexed recording was demonstrated through a 4 × 4 action potential mapping using a matrix of 5- × 5-µm2 OECTs. Those features are realized using a mild fabrication process and a simple circuit without limiting the potential applications of functional organic electronics.


Asunto(s)
Potenciales de Acción , Técnicas Biosensibles/métodos , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/fisiología , Transistores Electrónicos/estadística & datos numéricos , Células Cultivadas , Electroporación , Humanos , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología
5.
Sci Adv ; 4(10): eaau2426, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30345362

RESUMEN

High-precision monitoring of electrophysiological signals with high spatial and temporal resolutions is one of the most important subjects for elucidating physiology functions. Recently, ultraflexible multielectrode arrays (MEAs) have been fabricated to establish conformal contacts with the surface of organs and to measure propagation of electrophysiological signals with high spatial-temporal resolution; however, plastic substrates have high Young's modulus, causing difficulties in creating appropriate stretchability and blood compatibility for applying them on the dynamically moving and surgical bleeding surface of the heart. Here, we have successfully fabricated an active MEA that simultaneously achieves nonthrombogenicity, stretchability, and stability, which allows long-term electrocardiographic (ECG) monitoring of the dynamically moving hearts of rats even with capillary bleeding. Because of the active data readout, the measured ECG signals exhibit a high signal-to-noise ratio of 52 dB. The novel stretchable MEA is carefully designed using state-of-the-art engineering techniques by combining extraordinarily high gain organic electrochemical transistors processed on microgrid substrates and a coating of poly(3-methoxypropyl acrylate), which exhibits significant antithrombotic properties while maintaining excellent ionic conductivity.


Asunto(s)
Conductividad Eléctrica , Técnicas Electrofisiológicas Cardíacas/instrumentación , Corazón/fisiología , Animales , Módulo de Elasticidad , Fenómenos Electrofisiológicos , Diseño de Equipo , Masculino , Microelectrodos , Ratas
6.
Nature ; 561(7724): 516-521, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30258137

RESUMEN

Next-generation biomedical devices1-9 will need to be self-powered and conformable to human skin or other tissue. Such devices would enable the accurate and continuous detection of physiological signals without the need for an external power supply or bulky connecting wires. Self-powering functionality could be provided by flexible photovoltaics that can adhere to moveable and complex three-dimensional biological tissues1-4 and skin5-9. Ultra-flexible organic power sources10-13 that can be wrapped around an object have proven mechanical and thermal stability in long-term operation13, making them potentially useful in human-compatible electronics. However, the integration of these power sources with functional electric devices including sensors has not yet been demonstrated because of their unstable output power under mechanical deformation and angular change. Also, it will be necessary to minimize high-temperature and energy-intensive processes10,12 when fabricating an integrated power source and sensor, because such processes can damage the active material of the functional device and deform the few-micrometre-thick polymeric substrates. Here we realize self-powered ultra-flexible electronic devices that can measure biometric signals with very high signal-to-noise ratios when applied to skin or other tissue. We integrated organic electrochemical transistors used as sensors with organic photovoltaic power sources on a one-micrometre-thick ultra-flexible substrate. A high-throughput room-temperature moulding process was used to form nano-grating morphologies (with a periodicity of 760 nanometres) on the charge transporting layers. This substantially increased the efficiency of the organophotovoltaics, giving a high power-conversion efficiency that reached 10.5 per cent and resulted in a high power-per-weight value of 11.46 watts per gram. The organic electrochemical transistors exhibited a transconductance of 0.8 millisiemens and fast responsivity above one kilohertz under physiological conditions, which resulted in a maximum signal-to-noise ratio of 40.02 decibels for cardiac signal detection. Our findings offer a general platform for next-generation self-powered electronics.


Asunto(s)
Suministros de Energía Eléctrica , Electrónica/instrumentación , Monitoreo Fisiológico/instrumentación , Nanotecnología , Animales , Monitorización Hemodinámica/instrumentación , Calor , Humanos , Masculino , Nanotecnología/instrumentación , Docilidad , Polímeros , Ratas , Transistores Electrónicos
7.
ACS Appl Mater Interfaces ; 9(40): 34744-34750, 2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-28933150

RESUMEN

Flexible, transparent electrodes are a crucial component for future implantable and wearable systems. For practical applications, conductivity and flexibility should be further improved to prevent signal attenuation, heat generation, and disconnection. Herein, we fabricate an ultraflexible transparent electrode with low sheet resistance (8.6 Ω/sq) using an indium-tin-oxide/Au/indium-tin-oxide (ITO) multilayer on a 1 µm thick parylene substrate. The electrodes were foldable and when compared to pristine ITO displayed greater mechanical robustness. Applicability for large-area applications was confirmed through electrochemical impedance measurements, and the compatibility of electrode arrays for in vivo applications was demonstrated with an optogenetic experiment. As a result of the ultraflexible transparent electrode's excellent conformity to soft tissue, voltage signals induced by light stimulation directly below the electrode were successfully recorded on the moving muscle.


Asunto(s)
Electrodos , Metales , Compuestos Orgánicos , Óxidos
8.
Proc Natl Acad Sci U S A ; 114(40): 10554-10559, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28923928

RESUMEN

Mechanically flexible active multielectrode arrays (MEA) have been developed for local signal amplification and high spatial resolution. However, their opaqueness limited optical observation and light stimulation during use. Here, we show a transparent, ultraflexible, and active MEA, which consists of transparent organic electrochemical transistors (OECTs) and transparent Au grid wirings. The transparent OECT is made of Au grid electrodes and has shown comparable performance with OECTs with nontransparent electrodes/wirings. The transparent active MEA realizes the spatial mapping of electrocorticogram electrical signals from an optogenetic rat with 1-mm spacing and shows lower light artifacts than noise level. Our active MEA would open up the possibility of precise investigation of a neural network system with direct light stimulation.

9.
Adv Mater ; 28(44): 9722-9728, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27717052

RESUMEN

Integration of organic electrochemical transistors and organic field-effect transistors is successfully realized on a 600 nm thick parylene film toward an electrophysiology array. A single cell of an integrated device and a 2 × 2 electrophysiology array succeed in detecting electromyogram with local stimulation of the motor nerve bundle of a transgenic rat by a laser pulse.


Asunto(s)
Electrofisiología/métodos , Electrofisiología/normas , Transistores Electrónicos , Compuestos Orgánicos , Factores de Tiempo
10.
Adv Mater ; 28(10): 2049-54, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26754961

RESUMEN

Vacuum ultraviolet irradiation is used as a tool to systematically study the morphology, growth, and performance of small-molecule organic field-effect transistors. The surface energy can be carefully and precisely tuned by varying the dose of irradiation, allowing for the systematic study of the growth of an emerging organic semiconductor. This technique helps to methodically control the morphology and performance of organic semiconductors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...