Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 31(21): 33787-33798, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37859151

RESUMEN

Excess micromotion is detrimental to accurate qubit control of trapped ions, thus measuring and minimizing it is crucial. In this paper, we present a simple approach for measuring and suppressing excess micromotion of trapped ions by leveraging the existing laser-driven qubit transition scheme combined with direct scanning of dc voltages. The compensation voltage is deduced by analyzing the Bessel expansion of a scanned qubit transition rate. The method provides a fair level of sensitivity for practical quantum computing applications, while demanding minimal deviation of trap condition. By accomplishing compensation of excess micromotion in the qubit momentum-excitation direction, the scheme offers an additional avenue for excess micromotion compensation, complementing existing compensation schemes.

2.
Opt Express ; 27(3): 2184-2196, 2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30732259

RESUMEN

We demonstrate fast and efficient neutral atom rearrangements in an optical tweezer-trap array, using an enhanced hologram generation algorithm. The conventional Gerchberg-Saxton (GS) algorithm is modified to include zero-padding hologram expansion for optical tweezer sharpness, weighted iteration feedback for reduced crosstalk, and phase induction for successive phase continuity. With the new GS algorithm, we experimentally demonstrate defect-free formation of 2D atom arrays with various geometries, achieving a high loading probability of 0.98 for up to N ∼ 30 atoms. Furthermore, the hologram movie calculation speed is enhanced to cover a computational scalability up to 𝒪(103).

3.
Nat Commun ; 7: 13317, 2016 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-27796372

RESUMEN

Establishing a reliable method to form scalable neutral-atom platforms is an essential cornerstone for quantum computation, quantum simulation and quantum many-body physics. Here we demonstrate a real-time transport of single atoms using holographic microtraps controlled by a liquid-crystal spatial light modulator. For this, an analytical design approach to flicker-free microtrap movement is devised and cold rubidium atoms are simultaneously rearranged with 2N motional degrees of freedom, representing unprecedented space controllability. We also accomplish an in situ feedback control for single-atom rearrangements with the high success rate of 99% for up to 10 µm translation. We hope this proof-of-principle demonstration of high-fidelity atom-array preparations will be useful for deterministic loading of N single atoms, especially on arbitrary lattice locations, and also for real-time qubit shuttling in high-dimensional quantum computing architectures.

4.
Opt Express ; 24(9): 9816-25, 2016 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-27137595

RESUMEN

We propose and demonstrate three-dimensional rearrangements of single atoms. In experiments performed with single 87Rb atoms in optical microtraps actively controlled by a spatial light modulator, we demonstrate various dynamic rearrangements of up to N = 9 atoms including rotation, 2D vacancy filling, guiding, compactification, and 3D shuffling. With the capability of a phase-only Fourier mask to generate arbitrary shapes of the holographic microtraps, it was possible to place single atoms at arbitrary geometries of a few µm size and even continuously reconfigure them by conveying each atom. For this purpose, we loaded a series of computer-generated phase masks in the full frame rate of 60 Hz of the spatial light modulator, so the animation of phase mask transformed the holographic microtraps in real time, driving each atom along the assigned trajectory. Possible applications of this method of transformation of single atoms include preparation of scalable quantum platforms for quantum computation, quantum simulation, and quantum many-body physics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...