Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Pharmacol ; : 116241, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38697309

RESUMEN

Fatty acid omega hydroxylase P450s consist of enzymes that hydroxylate various chain-length saturated and unsaturated fatty acids (FAs) and bioactive eicosanoid lipids. The human cytochrome P450 gene 4 family (CYP4) consists of 12 members that are associated with several human diseases. However, their role in the progression of metabolic dysfunction-associated fatty liver disease (MASLD) remains largely unknown. It has long been thought that the induction of CYP4 family P450 during fasting and starvation prevents FA-related lipotoxicity through FA metabolism to dicarboxylic acids that are chain-shortened in peroxisomes and then transported to the mitochondria for complete oxidation. Several studies have revealed that peroxisome succinate transported to the mitochondria is used for gluconeogenesis during fasting and starvation, and recent evidence suggests that peroxisome acetate can be utilized for lipogenesis and lipid droplet formation as well as epigenetic modification of gene transcription. In addition, omega hydroxylation of the bioactive eicosanoid arachidonic acid to 20-Hydroxyeicosatetraenoic acid (20-HETE) is essential for activating the GPR75 receptor, leading to vasoconstriction and cell proliferation. Several mouse models of diet-induced MASLD have revealed the induction of selective CYP4A members and the suppression of CYP4F during steatosis and steatohepatitis, suggesting a critical metabolic role in the progression of fatty liver disease. Thus, to further investigate the functional roles of CYP4 genes, we analyzed the differential gene expression of 12 members of CYP4 gene family in datasets from the Gene Expression Omnibus (GEO) from patients with steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. We also observed the differential expression of various CYP4 genes in the progression of MASLD, indicating that different CYP4 members may have unique functional roles in the metabolism of specific FAs and eicosanoids at various stages of fatty liver disease. These results suggest that targeting selective members of the CYP4A family is a viable therapeutic approach for treating and managing MASLD.

2.
Anim Cells Syst (Seoul) ; 28(1): 137-151, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601060

RESUMEN

Inhalation of ambient particulate matter (PM) can disrupt the gut microbiome, while exercise independently influences the gut microbiome by promoting beneficial bacteria. In this study, we analyzed changes in gut microbial diversity and composition in response to combined interventions of PM exposure and aerobic exercise, extending up to 12 weeks. This investigation was conducted using mice, categorized into five groups: control group (Con), exercise group (EXE), exercise group followed by 3-day exposure to PM (EXE + 3-day PM), particulate matter exposure (PM), and PM exposure with concurrent treadmill exercise (PME). Notably, the PM group exhibited markedly lower alpha diversity and richness compared to the Con group and our analysis of beta diversity revealed significant variations among the intervention groups. Members of the Lachnospiraceae family showed significant enhancement in the exercise intervention groups (EXE and PME) compared to the Con and PM groups. The biomarker Lactobacillus, Coriobacteraceae, and Anaerofustis were enriched in the EXE group, while Desulfovibrionaceae, Mucispirillum schaedleri, Lactococcus and Anaeroplasma were highly enriched in the PM group. Differential abundance analysis revealed that Paraprevotella, Bacteroides, and Blautia were less abundant in the 12-week PM exposure group than in the 3-day PM exposure group. Moreover, both the 3-day and 12-week PM exposure groups exhibited a reduced relative abundance of Bacteroides uniformis, SMB53, and Staphylococcus compared to non-PM exposure groups. These findings will help delineate the possible roles and associations of altered microbiota resulting from the studied interventions, paving the way for future mechanistic research.

3.
J Lipid Res ; 64(12): 100469, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37922990

RESUMEN

Deletion of the nuclear hormone receptor small heterodimer partner (Shp) ameliorates the development of obesity and nonalcoholic steatohepatitis (NASH) in mice. Liver-specific SHP plays a significant role in this amelioration. The gut microbiota has been associated with these metabolic disorders, and the interplay between bile acids (BAs) and gut microbiota contributes to various metabolic disorders. Since hepatic SHP is recognized as a critical regulator in BA synthesis, we assessed the involvement of gut microbiota in the antiobesity and anti-NASH phenotype of Shp-/- mice. Shp deletion significantly altered the levels of a few conjugated BAs. Sequencing the 16S rRNA gene in fecal samples collected from separately housed mice revealed apparent dysbiosis in Shp-/- mice. Cohousing Shp-/- mice with WT mice during a Western diet regimen impaired their metabolic improvement and effectively disrupted their distinctive microbiome structure, which became indistinguishable from that of WT mice. While the Western diet challenge significantly increased lipopolysaccharide and phenylacetic acid (PAA) levels in the blood of WT mice, their levels were not increased in Shp-/- mice. PAA was strongly associated with hepatic peroxisome proliferator-activated receptor gamma isoform 2 (Pparg2) activation in mice, which may represent the basis of the molecular mechanism underlying the association of gut bacteria and hepatic steatosis. Shp deletion reshapes the gut microbiota possibly by altering BAs. While lipopolysaccharide and PAA are the major driving forces derived from gut microbiota for NASH development, Shp deletion decreases these signaling molecules via dysbiosis, thereby partially protecting mice from diet-induced metabolic disorders.


Asunto(s)
Enfermedades Metabólicas , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Ácidos y Sales Biliares/metabolismo , Disbiosis/genética , Disbiosis/metabolismo , Lipopolisacáridos/metabolismo , Hígado/metabolismo , Enfermedades Metabólicas/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , ARN Ribosómico 16S/metabolismo
4.
J Lipid Res ; 64(11): 100454, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37827334

RESUMEN

Small heterodimer partner (SHP, Nr0b2) is an orphan nuclear receptor that regulates bile acid, lipid, and glucose metabolism. Shp-/- mice are resistant to diet-induced obesity and hepatic steatosis. In this study, we explored the potential role of SHP in the development of nonalcoholic steatohepatitis (NASH). A 6-month Western diet (WD) regimen was used to induce NASH. Shp deletion protected mice from NASH progression by inhibiting inflammatory and fibrotic genes, oxidative stress, and macrophage infiltration. WD feeding disrupted the ultrastructure of hepatic mitochondria in WT mice but not in Shp-/- mice. In ApoE-/- mice, Shp deletion also effectively ameliorated hepatic inflammation after a 1 week WD regimen without an apparent antisteatotic effect. Moreover, Shp-/- mice resisted fibrogenesis induced by a methionine- and choline-deficient diet. Notably, the observed protection against NASH was recapitulated in liver-specific Shp-/- mice fed either the WD or methionine- and choline-deficient diet. Hepatic cholesterol was consistently reduced in the studied mouse models with Shp deletion. Our data suggest that Shp deficiency ameliorates NASH development likely by modulating hepatic cholesterol metabolism and inflammation.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Colesterol/metabolismo , Colina , Inflamación/metabolismo , Hígado/metabolismo , Metionina , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo
5.
J Lipid Res ; 64(9): 100361, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36958721

RESUMEN

N-acyl taurines (NATs) are bioactive lipids with emerging roles in glucose homeostasis and lipid metabolism. The acyl chains of hepatic and biliary NATs are enriched in polyunsaturated fatty acids (PUFAs). Dietary supplementation with a class of PUFAs, the omega-3 fatty acids, increases their cognate NATs in mice and humans. However, the synthesis pathway of the PUFA-containing NATs remains undiscovered. Here, we report that human livers synthesize NATs and that the acyl-chain preference is similar in murine liver homogenates. In the mouse, we found that hepatic NAT synthase activity localizes to the peroxisome and depends upon an active-site cysteine. Using unbiased metabolomics and proteomics, we identified bile acid-CoA:amino acid N-acyltransferase (BAAT) as the likely hepatic NAT synthase in vitro. Subsequently, we confirmed that BAAT knockout livers lack up to 90% of NAT synthase activity and that biliary PUFA-containing NATs are significantly reduced compared with wildtype. In conclusion, we identified the in vivo PUFA-NAT synthase in the murine liver and expanded the known substrates of the bile acid-conjugating enzyme, BAAT, beyond classic bile acids to the synthesis of a novel class of bioactive lipids.


Asunto(s)
Ácidos y Sales Biliares , Ácidos Grasos Omega-3 , Ratones , Humanos , Animales , Ácidos y Sales Biliares/metabolismo , Taurina/metabolismo , Hígado/metabolismo , Ácidos Grasos Insaturados/metabolismo , Aciltransferasas/metabolismo , Aminoácidos/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos Omega-3/metabolismo
6.
Hepatol Commun ; 6(10): 2765-2780, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35866568

RESUMEN

Bile acid-CoA: amino acid N-acyltransferase (BAAT) catalyzes bile acid conjugation, the last step in bile acid synthesis. BAAT gene mutation in humans results in hypercholanemia, growth retardation, and fat-soluble vitamin insufficiency. The current study investigated the physiological function of BAAT in bile acid and lipid metabolism using Baat-/- mice. The bile acid composition and hepatic gene expression were analyzed in 10-week-old Baat-/- mice. They were also challenged with a westernized diet (WD) for additional 15 weeks to assess the role of BAAT in bile acid, lipid, and glucose metabolism. Comprehensive lab animal monitoring system and cecal 16S ribosomal RNA gene sequencing were used to evaluate the energy metabolism and microbiome structure of the mice, respectively. In Baat-/- mice, hepatic bile acids were mostly unconjugated and their levels were significantly increased compared with wild-type mice. Bile acid polyhydroxylation was markedly up-regulated to detoxify unconjugated bile acid accumulated in Baat-/- mice. Although the level of serum marker of bile acid synthesis, 7α-hydroxy-4-cholesten-3-one, was higher in Baat-/- mice, their bile acid pool size was smaller. When fed a WD, the Baat-/- mice showed a compromised body weight gain and impaired insulin secretion. The gut microbiome of Baat-/- mice showed a low level of sulfidogenic bacteria Bilophila. Conclusion: Mouse BAAT is the major taurine-conjugating enzyme. Its deletion protected the animals from diet-induced obesity, but caused glucose intolerance. The gut microbiome of the Baat-/- mice was altered to accommodate the unconjugated bile acid pool.


Asunto(s)
Disbiosis , Metabolismo de los Lípidos , Aciltransferasas/genética , Aminoácidos/metabolismo , Animales , Ácidos y Sales Biliares , Coenzima A/metabolismo , Glucosa , Humanos , Hiperfagia , Metabolismo de los Lípidos/genética , Lípidos , Ratones , Taurina , Vitaminas
7.
Biochem Pharmacol ; 195: 114841, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34798124

RESUMEN

Fatty acids are essential in maintaining cellular homeostasis by providing lipids for energy production, cell membrane integrity, protein modification, and the structural demands of proliferating cells. Fatty acids and their derivatives are critical bioactive signaling molecules that influence many cellular processes, including metabolism, cell survival, proliferation, migration, angiogenesis, and cell barrier function. The CYP4 Omega hydroxylase gene family hydroxylate various short, medium, long, and very-long-chain saturated, unsaturated and polyunsaturated fatty acids. Selective members of the CYP4 family metabolize vitamins and biochemicals with long alkyl side chains and bioactive prostaglandins, leukotrienes, and arachidonic acids. It is uncertain of the physiological role of different members of the CYP4 omega hydroxylase gene family in the metabolic control of physiological and pathological processes in the liver. CYP4V2 is a unique member of the CYP4 family. CYP4V2 inactivation in retinal pigment epithelial cells leads to cholesterol accumulation and Bietti's Crystalline Dystrophy (BCD) pathogenesis. This commentary provides information on the role CYP4V2 has in metabolic syndrome and nonalcoholic fatty liver disease progression. This is accomplished by identifying its role in BCD, its control of cholesterol synthesis and lipid droplet formation in C. elegans, and the putative function in cardiovascular disease and gastrointestinal/hepatic pathologies.


Asunto(s)
Citocromo P-450 CYP4A/metabolismo , Familia 4 del Citocromo P450/metabolismo , Ácidos Grasos/metabolismo , Hígado Graso/metabolismo , Hígado/metabolismo , Secuencia de Aminoácidos , Animales , Distrofias Hereditarias de la Córnea/genética , Distrofias Hereditarias de la Córnea/metabolismo , Citocromo P-450 CYP4A/genética , Familia 4 del Citocromo P450/genética , Hígado Graso/genética , Humanos , Hígado/patología , Mutación , Enfermedades de la Retina/genética , Enfermedades de la Retina/metabolismo
8.
Pharm Res ; 38(5): 803-817, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33982226

RESUMEN

PURPOSE: Therapeutic strategies to treat ischemic stroke are limited due to the heterogeneity of cerebral ischemic injury and the mechanisms that contribute to the cell death. Since oxidative stress is one of the primary mechanisms that cause brain injury post-stroke, we hypothesized that therapeutic targets that modulate mitochondrial function could protect against reperfusion-injury after cerebral ischemia, with the focus here on a mitochondrial protein, mitoNEET, that modulates cellular bioenergetics. METHOD: In this study, we evaluated the pharmacology of the mitoNEET ligand NL-1 in an in vivo therapeutic role for NL-1 in a C57Bl/6 murine model of ischemic stroke. RESULTS: NL-1 decreased hydrogen peroxide production with an IC50 of 5.95 µM in neuronal cells (N2A). The in vivo activity of NL-1 was evaluated in a murine 1 h transient middle cerebral artery occlusion (t-MCAO) model of ischemic stroke. We found that mice treated with NL-1 (10 mg/kg, i.p.) at time of reperfusion and allowed to recover for 24 h showed a 43% reduction in infarct volume and 68% reduction in edema compared to sham-injured mice. Additionally, we found that when NL-1 was administered 15 min post-t-MCAO, the ischemia volume was reduced by 41%, and stroke-associated edema by 63%. CONCLUSION: As support of our hypothesis, as expected, NL-1 failed to reduce stroke infarct in a permanent photothrombotic occlusion model of stroke. This report demonstrates the potential therapeutic benefits of using mitoNEET ligands like NL-1 as novel mitoceuticals for treating reperfusion-injury with cerebral stroke.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/farmacología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Ataque Isquémico Transitorio/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Animales , Moléculas de Adhesión Celular Neuronal/uso terapéutico , Modelos Animales de Enfermedad , Metabolismo Energético/efectos de los fármacos , Humanos , Inyecciones Intraperitoneales , Proteínas de Unión a Hierro/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos
9.
Mol Metab ; 9: 131-140, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29361497

RESUMEN

OBJECTIVES: Activation of the bile acid (BA) receptors farnesoid X receptor (FXR) or G protein-coupled bile acid receptor (GPBAR1; TGR5) improves metabolic homeostasis. In this study, we aim to determine the impact of pharmacological activation of bile acid receptors by INT-767 on reversal of diet-induced metabolic disorders, and the relative contribution of FXR vs. TGR5 to INT-767's effects on metabolic parameters. METHODS: Wild-type (WT), Tgr5-/-, Fxr-/-, Apoe-/- and Shp-/- mice were used to investigate whether and how BA receptor activation by INT-767, a semisynthetic agonist for both FXR and TGR5, could reverse diet-induced metabolic disorders. RESULTS: INT-767 reversed HFD-induced obesity dependent on activation of both TGR5 and FXR and also reversed the development of atherosclerosis and non-alcoholic fatty liver disease (NAFLD). Mechanistically, INT-767 improved hypercholesterolemia by activation of FXR and induced thermogenic genes via activation of TGR5 and/or FXR. Furthermore, INT-767 inhibited several lipogenic genes and de novo lipogenesis in the liver via activation of FXR. We identified peroxisome proliferation-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (CEBPα) as novel FXR-regulated genes. FXR inhibited PPARγ expression by inducing small heterodimer partner (SHP) whereas the inhibition of CEBPα by FXR was SHP-independent. CONCLUSIONS: BA receptor activation can reverse obesity, NAFLD, and atherosclerosis by specific activation of FXR or TGR5. Our data suggest that, compared to activation of FXR or TGR5 only, dual activation of both FXR and TGR5 is a more attractive strategy for treatment of common metabolic disorders.


Asunto(s)
Ácidos y Sales Biliares/uso terapéutico , Hipercolesterolemia/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Acoplados a Proteínas G/agonistas , Animales , Ácidos y Sales Biliares/farmacología , Dieta Alta en Grasa/efectos adversos , Células Hep G2 , Humanos , Hipercolesterolemia/etiología , Hipercolesterolemia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/etiología , Obesidad/metabolismo
10.
Liver Res ; 2(4): 209-215, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31245168

RESUMEN

Peroxisome proliferator-activated receptor gamma (PPARγ or PPARG) is a ligand-activated transcription factor belonging to the nuclear hormone receptor superfamily. It plays a master role in the differentiation and proliferation of adipose tissues. It has two major isoforms, PPARγ1 and PPARγ2, encoded from a single gene using two separate promoters and alternative splicing. Among them, PPARγ2 is most abundantly expressed in adipocytes and plays major adipogenic and lipogenic roles in the tissue. Furthermore, it has been shown that PPARγ2 is also expressed in the liver, specifically in hepatocytes, and its expression level positively correlates with fat accumulation induced by pathological conditions such as obesity and diabetes. Knockout of the hepatic Pparg gene ameliorates hepatic steatosis induced by diet or genetic manipulations. Transcriptional activation of Pparg in the liver induces the adipogenic program to store fatty acids in lipid droplets as observed in adipocytes. Understanding how the hepatic Pparg gene expression is regulated will help develop preventative and therapeutic treatments for non-alcoholic fatty liver disease (NAFLD). Due to the potential adverse effect of hepatic Pparg gene deletion on peripheral tissue functions, therapeutic interventions that target PPARγ for fatty liver diseases require fine-tuning of this gene's expression and transcriptional activity.

11.
Hepatology ; 66(6): 1854-1865, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28586124

RESUMEN

Nuclear receptors farnesoid X receptor (FXR) and small heterodimer partner (SHP) are important regulators of bile acid, lipid, and glucose homeostasis. Here, we show that global Fxr -/- Shp-/- double knockout (DKO) mice are refractory to weight gain, glucose intolerance, and hepatic steatosis when challenged with high-fat diet. DKO mice display an inherently increased capacity to burn fat and suppress de novo hepatic lipid synthesis. Moreover, DKO mice were also very active and that correlated well with the observed increase in phosphoenolpyruvate carboxykinase expression, type IA fibers, and mitochondrial function in skeletal muscle. Mechanistically, we demonstrate that liver-specific Shp deletion protects against fatty liver development by suppressing expression of peroxisome proliferator-activated receptor gamma 2 and lipid-droplet protein fat-specific protein 27 beta. CONCLUSION: These data suggest that Fxr and Shp inactivation may be beneficial to combat diet-induced obesity and uncover that hepatic SHP is necessary to promote fatty liver disease. (Hepatology 2017;66:1854-1865).


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Hígado Graso/genética , Receptores Citoplasmáticos y Nucleares/fisiología , Animales , Peso Corporal/genética , Metabolismo de los Lípidos/genética , Ratones Noqueados
12.
Curr Mol Pharmacol ; 10(3): 226-236, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-26278388

RESUMEN

Lipin-1, a mammalian phosphatidic acid phosphatase (PAP), is a bi-functional molecule involved in various signaling pathways via its function as a PAP enzyme in the triglyceride synthesis pathway and in the nucleus as a transcriptional co-regulator. In the liver, lipin-1 is known to play a vital role in controlling the lipid metabolism and inflammation process at multiple regulatory levels. Alcoholic fatty liver disease (AFLD) is one of the earliest forms of liver injury and approximately 8-20% of patients with simple steatosis can develop into more severe forms of liver injury, including steatohepatitis, fibrosis/ cirrhosis, and eventually hepatocellular carcinoma (HCC). The signal transduction mechanisms for alcohol-induced detrimental effects in liver involves alteration of complex and multiple signaling pathways largely governed by a central and upstream signaling system, namely, sirtuin 1 (SIRT1)-AMP activated kinase (AMPK) axis. Emerging evidence suggests a pivotal role of lipin-1 as a crucial downstream regulator of SIRT1-AMPK signaling system that is likely to be ultimately responsible for development and progression of AFLD. Several lines of evidence demonstrate that ethanol exposure significantly induces lipin-1 gene and protein expression levels in cultured hepatocytes and in the livers of rodents, induces lipin-1-PAP activity, impairs the functional activity of nuclear lipin-1, disrupts lipin-1 mRNA alternative splicing and induces lipin-1 nucleocytoplasmic shuttling. Such impairment in response to ethanol leads to derangement of hepatic lipid metabolism, and excessive production of inflammatory cytokines in the livers of the rodents and human alcoholics. This review summarizes current knowledge about the role of lipin-1 in the pathogenesis of AFLD and its potential signal transduction mechanisms.


Asunto(s)
Etanol/metabolismo , Hígado Graso Alcohólico/metabolismo , Fosfatidato Fosfatasa/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Etanol/química , Hígado Graso Alcohólico/patología , Humanos , Inflamación/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Transducción de Señal , Sirtuina 1/metabolismo
13.
Hepatol Commun ; 1(10): 1085-1098, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29404444

RESUMEN

Peroxisome proliferator-activated receptor gamma (PPARγ) is a master regulator for white adipocyte differentiation and lipid storage. The increased level of hepatic PPARγ2 isoform reprograms liver for lipid storage and causes abnormal fat accumulation in certain pathophysiologic conditions. The current study aimed to investigate a role of transcriptional repressor hairy and enhancer of split 6 (HES6) in the regulation of Pparg2 expression and hepatic steatosis induced by diet. Liver-specific overexpression of Hes6 using adenovirus reduced Pparg2 messenger RNA levels by 90% and hepatic triglyceride accumulation by 22% compared to the levels in mice injected with an adenoviral empty vector with Western diet feeding. In sharp contrast, silencing Hes6 gene expression using short hairpin RNA increased hepatic lipid accumulation and Pparg2 messenger RNA levels by 70% and 4-fold, respectively. To locate hepatocyte nuclear factor 4 alpha (HNF4α) binding site(s), through which repressional activity of HES6 is mediated, a 2.5-kb Pparg2 promoter-driven luciferase reporter was constructed for transient transfection assays. Subsequently, chromatin immunoprecipitation and electrophoretic mobility shift assays were performed. An HNF4α binding consensus sequence was identified at 903 base pairs upstream from the transcription start site of Pparg2. Deletion or point mutation of the sequence in a luciferase reporter containing the Pparg2 promoter abolished HNF4α-mediated activation in HeLa cells. Chromatin immunoprecipitation and electrophoretic mobility shift assays further confirmed direct recruitment and binding of HNF4α to the site. Gene expression analysis with liver samples from subjects with nonalcoholic steatohepatitis suggested that the axis of the Hes6-Hnf4a-Pparg2 transcriptional cascade is also responsible for hepatic fat accumulation in humans. Conclusion: HES6 represses Pparg2 gene expression, thereby preventing hepatic lipid accumulation induced by chronic Western diet feeding or pathophysiologic conditions. (Hepatology Communications 2017;1:1085-1098).

14.
Bioorg Med Chem Lett ; 27(2): 303-308, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27913180

RESUMEN

Elevated triglycerides (TG) contribute towards increased risk for cardiovascular disease. Lipoprotein lipase (LPL) is an enzyme that is responsible for the metabolism of core triglycerides of very-low density lipoproteins (VLDL) and chylomicrons in the vasculature. In this study, we explored the structure-activity relationships of our lead compound (C10d) that we have previously identified as an LPL agonist. We found that the cyclopropyl moiety of C10d is not absolutely necessary for LPL activity. Several substitutions were found to result in loss of LPL activity. The compound C10d was also tested in vivo for its lipid lowering activity. Mice were fed a high-fat diet (HFD) for four months, and treated for one week at 10mg/kg. At this dose, C10d exhibited in vivo biological activity as indicated by lower TG and cholesterol levels as well as reduced body fat content as determined by ECHO-MRI. Furthermore, C10d also reduced the HFD induced fat accumulation in the liver. Our study has provided insights into the structural and functional characteristics of this novel LPL activator.


Asunto(s)
Bencenoacetamidas/farmacología , Imidazoles/farmacología , Lipoproteína Lipasa/metabolismo , Animales , Bencenoacetamidas/síntesis química , Bencenoacetamidas/química , Relación Dosis-Respuesta a Droga , Imidazoles/síntesis química , Imidazoles/química , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
15.
Hepatology ; 64(4): 1072-85, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27359351

RESUMEN

UNLABELLED: Activation of farnesoid X receptor (FXR) markedly attenuates development of atherosclerosis in animal models. However, the underlying mechanism is not well elucidated. Here, we show that the FXR agonist, obeticholic acid (OCA), increases fecal cholesterol excretion and macrophage reverse cholesterol transport (RCT) dependent on activation of hepatic FXR. OCA does not increase biliary cholesterol secretion, but inhibits intestinal cholesterol absorption. OCA markedly inhibits hepatic cholesterol 7α-hydroxylase (Cyp7a1) and sterol 12α-hydroxylase (Cyp8b1) partly through inducing small heterodimer partner, leading to reduced bile acid pool size and altered bile acid composition, with the α/ß-muricholic acid proportion in bile increased by 2.6-fold and taurocholic acid (TCA) level reduced by 71%. Overexpression of Cyp8b1 or concurrent overexpression of Cyp7a1 and Cyp8b1 normalizes TCA level, bile acid composition, and intestinal cholesterol absorption. CONCLUSION: Activation of FXR inhibits intestinal cholesterol absorption by modulation of bile acid pool size and composition, thus leading to increased RCT. Targeting hepatic FXR and/or bile acids may be useful for boosting RCT and preventing the development of atherosclerosis. (Hepatology 2016;64:1072-1085).


Asunto(s)
Ácidos y Sales Biliares/química , Colesterol/metabolismo , Absorción Intestinal , Receptores Citoplasmáticos y Nucleares/fisiología , Animales , Transporte Biológico , Ratones , Ratones Endogámicos C57BL
16.
J Lipid Res ; 57(8): 1541-51, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27354419

RESUMEN

Elevated plasma TGs increase risk of cardiovascular disease in women. Estrogen treatment raises plasma TGs in women, but molecular mechanisms remain poorly understood. Here we explore the role of cholesteryl ester transfer protein (CETP) in the regulation of TG metabolism in female mice, which naturally lack CETP. In transgenic CETP females, acute estrogen treatment raised plasma TGs 50%, increased TG production, and increased expression of genes involved in VLDL synthesis, but not in nontransgenic littermate females. In CETP females, estrogen enhanced expression of small heterodimer partner (SHP), a nuclear receptor regulating VLDL production. Deletion of liver SHP prevented increases in TG production and expression of genes involved in VLDL synthesis in CETP mice with estrogen treatment. We also examined whether CETP expression had effects on TG metabolism independent of estrogen treatment. CETP increased liver ß-oxidation and reduced liver TG content by 60%. Liver estrogen receptor α (ERα) was required for CETP expression to enhance ß-oxidation and reduce liver TG content. Thus, CETP alters at least two networks governing TG metabolism, one involving SHP to increase VLDL-TG production in response to estrogen, and another involving ERα to enhance ß-oxidation and lower liver TG content. These findings demonstrate a novel role for CETP in estrogen-mediated increases in TG production and a broader role for CETP in TG metabolism.


Asunto(s)
Proteínas de Transferencia de Ésteres de Colesterol/fisiología , Hígado/metabolismo , Triglicéridos/sangre , Animales , Receptor alfa de Estrógeno/metabolismo , Estrógenos/fisiología , Femenino , Metabolismo de los Lípidos , Redes y Vías Metabólicas , Ratones Endogámicos C57BL , Ratones Transgénicos , Oxidación-Reducción , Triglicéridos/biosíntesis
17.
Am J Physiol Gastrointest Liver Physiol ; 310(10): G799-807, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26968209

RESUMEN

Deficiency of the orphan nuclear hormone receptor small heterodimer partner (SHP, NR0B2) protects mice from diet-induced hepatic steatosis, in part, via repression of peroxisome proliferator-activated receptor (PPAR)-γ2 (Pparg2) gene expression. Alcoholic fatty liver diseases (AFLD) share many common pathophysiological features with non-AFLD. To study the role of SHP and PPARγ2 in AFLD, we used a strategy of chronic ethanol feeding plus a single binge ethanol feeding to challenge wild-type (WT) and SHP-null (SHP(-/-)) mice with ethanol. The ethanol feeding induced liver fat accumulation and mRNA expression of hepatic Pparg2 in WT mice, which suggests that a high level of PPARγ2 is a common driving force for fat accumulation induced by ethanol or a high-fat diet. Interestingly, ethanol-fed SHP(-/-) mice displayed hepatic fat accumulation similar to that of ethanol-fed WT mice, even though their Pparg2 expression level remained lower. Mortality of SHP(-/-) mice after ethanol binge feeding was significantly reduced and their acetaldehyde dehydrogenase (Aldh2) mRNA level was higher than that of their WT counterparts. After an intoxicating dose of ethanol, SHP(-/-) mice exhibited faster blood ethanol clearance and earlier wake-up time than WT mice. Higher blood acetate, the end product of ethanol metabolism, and lower acetaldehyde levels were evident in the ethanol-challenged SHP(-/-) than WT mice. Ethanol-induced inflammatory responses and lipid peroxidation were also lower in SHP(-/-) mice. The current data show faster ethanol catabolism and extra fat storage through conversion of acetate to acetyl-CoA before its release into the circulation in this ethanol-feeding model in SHP(-/-) mice.


Asunto(s)
Etanol/metabolismo , Hepatopatías Alcohólicas/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Acetatos/sangre , Aldehído Deshidrogenasa Mitocondrial/genética , Aldehído Deshidrogenasa Mitocondrial/metabolismo , Animales , Etanol/sangre , Etanol/toxicidad , Peroxidación de Lípido , Hígado/efectos de los fármacos , Hígado/metabolismo , Hepatopatías Alcohólicas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , PPAR gamma/genética , PPAR gamma/metabolismo , Receptores Citoplasmáticos y Nucleares/deficiencia , Receptores Citoplasmáticos y Nucleares/metabolismo
18.
Endocrinol Metab (Seoul) ; 30(4): 584-92, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26485468

RESUMEN

BACKGROUND: Expression of hepatic cholesterol 7α-hydroxylase (CYP7A1) is negatively regulated by orphan nuclear receptor small heterodimer partner (SHP). In this study, we aimed to find whether thyroid hormone regulates SHP expression by modulating the transcriptional activities of liver receptor homolog-1 (LRH-1). METHODS: We injected thyroid hormone (triiodothyronine, T3) to C57BL/6J wild type. RNA was isolated from mouse liver and used for microarray analysis and quantitative real-time polymerase chain reaction (PCR). Human hepatoma cell and primary hepatocytes from mouse liver were used to confirm the effect of T3 in vitro. Promoter assay and electrophoretic mobility-shift assay (EMSA) were also performed using human hepatoma cell line. RESULTS: Initial microarray results indicated that SHP expression is markedly decreased in livers of T3 treated mice. We confirmed that T3 repressed SHP expression in the liver of mice as well as in mouse primary hepatocytes and human hepatoma cells by real-time PCR analysis. LRH-1 increased the promoter activity of SHP; however, this increased activity was markedly decreased after thyroid hormone receptor ß/retinoid X receptor α/T3 administration. EMSA revealed that T3 inhibits specific LRH-1 DNA binding. CONCLUSION: We found that thyroid hormone regulates the expression of SHP mRNA through interference with the transcription factor, LRH-1.

19.
J Biomed Sci ; 22: 30, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25951943

RESUMEN

BACKGROUND: Small heterodimer partner (SHP, NR0B2) is involved in diverse metabolic pathways, including hepatic bile acid, lipid and glucose homeostasis, and has been implicated in effects on the peroxisome proliferator-activated receptor γ (PPARγ), a master regulator of adipogenesis and the receptor for antidiabetic drugs thiazolidinediones (TZDs). In this study, we aim to investigate the role of SHP in TZD response by comparing TZD-treated leptin-deficient (ob/ob) and leptin-, SHP-deficient (ob/ob;Shp(-/-)) double mutant mice. RESULTS: Both ob/ob and double mutant ob/ob;Shp(-/-) mice developed hyperglycemia, insulin resistance, and hyperlipidemia, but hepatic fat accumulation was decreased in the double mutant ob/ob;Shp(-/-) mice. PPARγ2 mRNA levels were markedly lower in ob/ob;Shp(-/-) liver and decreased to a lesser extent in adipose tissue. The TZD troglitazone did not reduce glucose or circulating triglyceride levels in ob/ob;Shp(-/-) mice. Expression of the adipocytokines, such as adiponectin and resistin, was not stimulated by troglitazone treatment. Expression of hepatic lipogenic genes was also reduced in ob/ob;Shp(-/-) mice. Moreover, overexpression of SHP by adenovirus infection increased PPARγ2 mRNA levels in mouse primary hepatocytes. CONCLUSIONS: Our results suggest that SHP is required for both antidiabetic and hypolipidemic effects of TZDs in ob/ob mice through regulation of PPARγ expression.


Asunto(s)
Diabetes Mellitus/tratamiento farmacológico , Insulina/metabolismo , PPAR gamma/biosíntesis , Receptores Citoplasmáticos y Nucleares/genética , Tiazolidinedionas/administración & dosificación , Animales , Ácidos y Sales Biliares/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Hepatocitos/efectos de los fármacos , Humanos , Resistencia a la Insulina/genética , Leptina/deficiencia , Leptina/genética , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Ratones Obesos , PPAR gamma/genética , ARN Mensajero/genética , Receptores Citoplasmáticos y Nucleares/biosíntesis , Receptores Citoplasmáticos y Nucleares/metabolismo
20.
Drug Metab Dispos ; 43(7): 1002-7, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25926433

RESUMEN

Cytochrome P450 2D6 (CYP2D6) is a major drug-metabolizing enzyme responsible for eliminating approximately 20% of marketed drugs. Studies have shown that differential transcriptional regulation of CYP2D6 may contribute to large interindividual variability in CYP2D6-mediated drug metabolism. However, the factors governing CYP2D6 transcription are largely unknown. We previously demonstrated small heterodimer partner (SHP) as a novel transcriptional repressor of CYP2D6 expression. SHP is a representative target gene of the farnesoid X receptor (FXR). The objective of this study is to investigate whether an agonist of FXR, 3-(2,6-dichlorophenyl)-4-(3'-carboxy-2-chlorostilben-4-yl)oxymethyl-5-isopropylisoxazole (GW4064), alters CYP2D6 expression and activity. In CYP2D6-humanized transgenic mice, GW4064 decreased hepatic CYP2D6 expression and activity (by 2-fold) while increasing SHP expression (by 2-fold) and SHP recruitment to the CYP2D6 promoter. CYP2D6 repression by GW4064 was abrogated in Shp(-/-);CYP2D6 mice, indicating a critical role of SHP in CYP2D6 regulation by GW4064. Also, GW4064 decreased CYP2D6 expression (by 2-fold) in primary human hepatocytes, suggesting that the results obtained in CYP2D6-humanized transgenic mice can be translated to humans. This proof of concept study provides evidence for CYP2D6 regulation by an inducer of SHP expression, namely, the FXR agonist GW4064.


Asunto(s)
Citocromo P-450 CYP2D6/biosíntesis , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Isoxazoles/farmacología , Receptores Citoplasmáticos y Nucleares/agonistas , Animales , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Hepatocitos/metabolismo , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...