Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Sci Rep ; 13(1): 20830, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012255

RESUMEN

The mosquito Anopheles gambiae s.s. is a primary malaria vector throughout sub-Saharan Africa including the islands of the Comoros archipelago (Anjouan, Grande Comore, Mayotte and Mohéli). These islands are located at the northern end of the Mozambique Channel in eastern Africa. Previous studies have shown a relatively high degree of genetic isolation between the Comoros islands and mainland populations of A. gambiae, but the origin of the island populations remains unclear. Here, we analyzed phylogenetic relationships among island and mainland populations using complete mitochondrial genome sequences of individual A. gambiae specimens. This work augments earlier studies based on analysis of the nuclear genome. We investigated the source population of A. gambiae for each island, estimated the number of introductions, when they occurred and explored evidence for contemporary gene flow between island and mainland populations. These studies are relevant to understanding historical patterns in the dispersal of this important malaria vector and provide information critical to assessing their potential for the exploration of genetic-based vector control methods to eliminate this disease. Phylogenetic analysis and haplotype networks were constructed from mitogenome sequences of 258 A. gambiae from the four islands. In addition, 112 individuals from seven countries across sub-Saharan Africa and Madagascar were included to identify potential source populations. Our results suggest that introduction events of A. gambiae into the Comoros archipelago were rare and recent events and support earlier claims that gene flow between the mainland and these islands is limited. This study is concordant with earlier work suggesting the suitability of these oceanic islands as appropriate sites for conducting field trial releases of genetically engineered mosquitoes (GEMs).


Asunto(s)
Anopheles , Malaria , Humanos , Animales , Anopheles/genética , Filogenia , Océano Índico , Mosquitos Vectores/genética , Malaria/genética , Malaria/prevención & control
2.
F1000Res ; 12: 330, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37842340

RESUMEN

Despite efforts to minimize the impacts of malaria and reduce the number of primary vectors, malaria has yet to be eliminated in Zambia. Understudied vector species may perpetuate malaria transmission in pre-elimination settings. Anopheles squamosus is one of the most abundantly caught mosquito species in southern Zambia and has previously been found with Plasmodium falciparum sporozoites, a causal agent of human malaria. This species may be a critical vector of malaria transmission, however, there is a lack of genetic information available for An. squamosus. We report the first genome data and the first complete mitogenome (Mt) sequence of An. squamosus. The sequence was extracted from one individual mosquito from the Chidakwa area in Macha, Zambia. The raw reads were obtained using Illumina Novaseq 6000 and assembled through NOVOplasty alignment with related species. The length of the An. squamosus Mt was 15,351 bp, with 77.9 % AT content. The closest match to the whole mitochondrial genome in the phylogenetic tree is the African malaria mosquito, Anopheles gambiae. Its genome data is available through National Center for Biotechnology Information (NCBI) Sequencing Reads Archive (SRA) with accession number SRR22114392. The mitochondrial genome was deposited in NCBI GenBank with the accession number OP776919. The ITS2 containing contig sequence was deposited in GenBank with the accession number OQ241725. Mitogenome annotation and a phylogenetic tree with related Anopheles mosquito species are provided.


Asunto(s)
Anopheles , Carcinoma de Células Escamosas , Genoma Mitocondrial , Malaria , Animales , Anopheles/genética , Genoma Mitocondrial/genética , Malaria/genética , Mosquitos Vectores/genética , Filogenia , Zambia
3.
J Med Entomol ; 60(6): 1305-1313, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37651733

RESUMEN

Aedes koreicus (Edward, 1917) (Diptera: Culicidae), a mosquito species native to East Asia, has spread to parts of Europe and Central Asia since 2008. The species shares ecological characteristics with Aedes japonicus (Theobald, 1901) (Diptera: Culicidae), which has already successfully invaded and established in North America and Europe. Given these similarities, it is plausible that Ae. koreicus may also invade North America in the future. However, the invasion of Ae. koreicus may be masked or have delayed detection due to their similar morphologies with Ae. japonicus. This study highlights the potential risks of invasion of Ae. koreicus into North America, especially in the northeastern United States, and for further expansion in Europe. We used the maximum entropy model to identify areas with a high likelihood of presence in North America and Europe using comprehensive occurrence records from East Asia, Central Asia, and Europe. We have identified 15 additional countries in Europe and 7 states in the United States that will likely have suitable environments for Ae. koreicus. Additionally, we reviewed the morphological characteristics of Ae. koreicus and Ae. japonicus and provided morphological keys to distinguish the 2 species. Morphological results contradicting previous studies suggested that finding the origin by morphological comparison between Ae. koreicus populations may need re-evaluation. The information presented here will be useful for researchers and public health professionals in high-risk areas to be informed about morphological characteristics to distinguish Ae. koreicus from similar-looking Ae. japonicus. These tools will allow more careful monitoring of the potential introduction of this highly invasive species.


Asunto(s)
Aedes , Animales , Europa (Continente) , América del Norte , New England , Especies Introducidas
4.
BMC Genomics ; 24(1): 311, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37301847

RESUMEN

BACKGROUND: Rapid adaptation to new environments can facilitate species invasions and range expansions. Understanding the mechanisms of adaptation used by invasive disease vectors in new regions has key implications for mitigating the prevalence and spread of vector-borne disease, although they remain relatively unexplored. RESULTS: Here, we integrate whole-genome sequencing data from 96 Aedes aegypti mosquitoes collected from various sites in southern and central California with 25 annual topo-climate variables to investigate genome-wide signals of local adaptation among populations. Patterns of population structure, as inferred using principal components and admixture analysis, were consistent with three genetic clusters. Using various landscape genomics approaches, which all remove the confounding effects of shared ancestry on correlations between genetic and environmental variation, we identified 112 genes showing strong signals of local environmental adaptation associated with one or more topo-climate factors. Some of them have known effects in climate adaptation, such as heat-shock proteins, which shows selective sweep and recent positive selection acting on these genomic regions. CONCLUSIONS: Our results provide a genome wide perspective on the distribution of adaptive loci and lay the foundation for future work to understand how environmental adaptation in Ae. aegypti impacts the arboviral disease landscape and how such adaptation could help or hinder efforts at population control.


Asunto(s)
Aedes , Animales , Aedes/genética , Mosquitos Vectores/genética , Genómica , Adaptación Fisiológica/genética , California
5.
J Am Mosq Control Assoc ; 39(2): 108-121, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36972520

RESUMEN

Several invasive mosquito species that are nuisances or of medical and veterinary importance have been introduced into the Southeastern region of the USA, posing a threat to other species and the local ecosystems and/or increasing the risk of pathogen transmission to people, livestock, and domestic pets. Prompt and effective monitoring and control of invasive species is essential to prevent them from spreading and causing harmful effects. However, the capacity for invasive mosquito species surveillance is highly variable among mosquito control programs in the Southeast, depending on a combination of factors such as regional geography and climate, access to resources, and the ability to interact with other programs. To facilitate the development of invasive mosquito surveillance in the region, we, the Mosquito BEACONS (Biodiversity Enhancement and Control of Non-native Species) working group, conducted a survey on the capacities of various public health agencies and pest control agencies engaged in mosquito surveillance and control in seven Southeastern states (Alabama, Florida, Georgia, Louisiana, Mississippi, North Carolina, and South Carolina). Ninety control programs completed the survey, representing an overall response rate of 25.8%. We report key findings from our survey, emphasizing the training and resource needs, and discuss their implications for future invasive mosquito surveillance and control capacity building. By increasing communication and collaboration opportunities (e.g., real-time sharing of collection records, coordinated multistate programs), the establishment of Mosquito BEACONS and the implementation of this survey can accelerate knowledge transfer and improve decision support capacity in response to or in preparation for invasive mosquito surveillance and can establish infrastructure that can be used to inform programs around the world.


Asunto(s)
Ecosistema , Insectos Vectores , Animales , Humanos , Florida , Georgia , Louisiana , Especies Introducidas , Control de Mosquitos
6.
J Med Entomol ; 60(2): 364-372, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36656078

RESUMEN

Aedes aegypti Linnaeus and Aedes albopictus Skuse are vectors of dengue virus and responsible for multiple autochthonous dengue outbreaks in Big Island, Hawai'i. Control of Ae. aegypti and Ae. albopictus has been achieved in In2Care trap trials, which motivated us to investigate this potential control approach in the Big Island. Our In2Care trial was performed in the coastal settlement of Miloli'i in the southwest of Big Island where both Ae. aegypti and Ae. albopictus are found. This trial starting in the second week of July and ending in the last week of October 2019 fell within the traditional wet season in Miloli'i. No significant reduction in egg or adult counts in our treatment areas following 12 wk of two In2Care trap placements per participating household were observed. In fact, an increase in numbers of adults during the trial reached levels that required the local mosquito abatement program to stop the In2Care trap trial and institute a thorough source reduction and treatment campaign. The source reduction campaign revealed a large variety and quantity of water sources competed with the oviposition cups we had placed, which likely lowered the chances of our oviposition cups being visited by pyriproxyfen-contaminated Aedes adults exiting the In2Care traps.


Asunto(s)
Aedes , Femenino , Animales , Hawaii , Mosquitos Vectores , Control de Mosquitos
7.
Mitochondrial DNA B Resour ; 8(1): 64-68, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36685646

RESUMEN

We report the first complete mitogenome (Mt) sequence of Aedes japonicus japonicus (Diptera: Culicidae). The sequence was extracted from one adult from the Big Island of Hawai'i Island. The length of the Ae. japonicus japonicus Mt was 16,528bp with 78.1% AT content. Its sequence is most similar to the Mt sequence of Aedes koreicus with 90.81% sequence identity. This is the first full Mt sequence available for this species and provides important genetic resource for studying population genetics and dynamics of this important invasive mosquito species.

8.
Sci Rep ; 12(1): 10800, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35750745

RESUMEN

The sibling species An. coluzzii and An. gambiae s.s. are major malaria vectors thought to be undergoing sympatric speciation with gene flow. In the absence of intrinsic post-zygotic isolation between the two taxa, speciation is thought possible through the association of assortative mating and genomic regions protected from gene flow by recombination suppression. Such genomic islands of speciation have been described in pericentromeric regions of the X, 2L and 3L chromosomes. Spatial swarm segregation plays a major role in assortative mating between sympatric populations of the two species and, given their importance for speciation, genes responsible for such pre-mating reproductive barriers are expected to be protected within divergence islands. In this study 2063 male and 266 female An. coluzzii and An. gambiae s.s. individuals from natural swarms in Burkina Faso, West Africa were sampled. These were genotyped at 16 speciation island SNPs, and characterized as non-hybrid individuals, F1 hybrids or recombinant F1+n backcrossed individuals. Their genotypes at each speciation island were associated with their participation in An. coluzzii and An. gambiae-like swarms. Despite extensive introgression between the two species, the X-island genotype of non-hybrid individuals (37.6%), F1 hybrids (0.1%) and F1+n recombinants (62.3%) of either sex perfectly associated to each swarm type. Associations between swarm type and the 3L and 2L speciation islands were weakened or broken down by introgression. The functional demonstration of a close association between spatial segregation behaviour and the X speciation island lends further support to sympatric speciation models facilitated by pericentric recombination suppression in this important species complex.


Asunto(s)
Anopheles , Animales , Anopheles/genética , Burkina Faso , Femenino , Humanos , Masculino , Mosquitos Vectores/genética , Simpatría , Cromosoma X/genética
9.
Sci Rep ; 12(1): 226, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34996998

RESUMEN

Using high-depth whole genome sequencing of F0 mating pairs and multiple individual F1 offspring, we estimated the nuclear mutation rate per generation in the malaria vectors Anopheles coluzzii and Anopheles stephensi by detecting de novo genetic mutations. A purpose-built computer program was employed to filter actual mutations from a deep background of superficially similar artifacts resulting from read misalignment. Performance of filtering parameters was determined using software-simulated mutations, and the resulting estimate of false negative rate was used to correct final mutation rate estimates. Spontaneous mutation rates by base substitution were estimated at 1.00 × 10-9 (95% confidence interval, 2.06 × 10-10-2.91 × 10-9) and 1.36 × 10-9 (95% confidence interval, 4.42 × 10-10-3.18 × 10-9) per site per generation in A. coluzzii and A. stephensi respectively. Although similar studies have been performed on other insect species including dipterans, this is the first study to empirically measure mutation rates in the important genus Anopheles, and thus provides an estimate of µ that will be of utility for comparative evolutionary genomics, as well as for population genetic analysis of malaria vector mosquito species.


Asunto(s)
Anopheles/genética , Mosquitos Vectores/genética , Animales , Femenino , Humanos , Proteínas de Insectos/genética , Malaria/transmisión , Masculino , Tasa de Mutación , Secuenciación Completa del Genoma
10.
Insects ; 14(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36661943

RESUMEN

Anopheles pretoriensis is widely distributed across Africa, including on oceanic islands such as Grande Comore in the Comoros. This species is known to be mostly zoophylic and therefore considered to have low impact on the transmission of human malaria. However, A. pretoriensis has been found infected with Plasmodium, suggesting that it may be epidemiologically important. In the present study, we sequenced and assembled the complete mitogenome of A. pretoriensis and inferred its phylogenetic relationship among other species in the subgenus Cellia. We also investigated the genetic structure of A. pretoriensis populations on Grande Comore Island, and between this island population and sites in continental Africa, using partial sequence of the mitochondrial cytochrome c oxidase subunit I (COI) gene. Seven haplotypes were found on the island, one of which was ubiquitous. There was no clear divergence between island haplotypes and those found on the continent. The present work contributes knowledge on this understudied, yet abundant, Anopheles species.

11.
G3 (Bethesda) ; 11(12)2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34599814

RESUMEN

Drosophila suzukii, or spotted-wing drosophila, is now an established pest in many parts of the world, causing significant damage to numerous fruit crop industries. Native to East Asia, D. suzukii infestations started in the United States a decade ago, occupying a wide range of climates. To better understand invasion ecology of this pest, knowledge of past migration events, population structure, and genetic diversity is needed. In this study, we sequenced whole genomes of 237 individual flies collected across the continental United States, as well as several sites in Europe, Brazil, and Asia, to identify and analyze hundreds of thousands of genetic markers. We observed strong population structure between Western and Eastern US populations, but no evidence of any population structure between different latitudes within the continental United States, suggesting that there are no broad-scale adaptations occurring in response to differences in winter climates. We detect admixture from Hawaii to the Western United States and from the Eastern United States to Europe, in agreement with previously identified introduction routes inferred from microsatellite analysis. We also detect potential signals of admixture from the Western United States back to Asia, which could have important implications for shipping and quarantine policies for exported agriculture. We anticipate this large genomic dataset will spur future research into the genomic adaptations underlying D. suzukii pest activity and development of novel control methods for this agricultural pest.


Asunto(s)
Drosophila , Metagenómica , Animales , Drosophila/genética , Frutas , Marcadores Genéticos , Genómica , Estados Unidos
12.
Pathogens ; 10(8)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34451411

RESUMEN

Florida lies within a subtropical region where the climate allows diverse mosquito species including invasive species to thrive year-round. As of 2021, there are currently 66 state-approved Florida Mosquito Control Districts, which are major stakeholders for Florida public universities engaged in mosquito research. Florida is one of the few states with extensive organized mosquito control programs. The Florida State Government and Florida Mosquito Control Districts have long histories of collaboration with research institutions. During fall 2020, we carried out a survey to collect baseline data on the current control priorities from Florida Mosquito Control Districts relating to (1) priority control species, (2) common adult and larval control methods, and (3) major research questions to address that will improve their control and surveillance programs. The survey data showed that a total of 17 distinct mosquito species were considered to be priority control targets, with many of these species being understudied. The most common control approaches included truck-mounted ultra-low-volume adulticiding and biopesticide-based larviciding. The districts held interest in diverse research questions, with many prioritizing studies on basic science questions to help develop evidence-based control strategies. Our data highlight the fact that mosquito control approaches and priorities differ greatly between districts and provide an important point of comparison for other regions investing in mosquito control, particularly those with similar ecological settings, and great diversity of potential mosquito vectors, such as in Florida. Our findings highlight a need for greater alignment of research priorities between mosquito control and mosquito research. In particular, we note a need to prioritize filling knowledge gaps relating to understudied mosquito species that have been implicated in arbovirus transmission.

13.
Commun Biol ; 4(1): 630, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34040154

RESUMEN

Anopheles coluzzii is a major malaria vector throughout its distribution in west-central Africa. Here we present a whole-genome study of 142 specimens from nine countries in continental Africa and three islands in the Gulf of Guinea. This sample set covers a large part of this species' geographic range. Our population genomic analyses included a description of the structure of mainland populations, island populations, and connectivity between them. Three genetic clusters are identified among mainland populations and genetic distances (FST) fits an isolation-by-distance model. Genomic analyses are applied to estimate the demographic history and ancestry for each island. Taken together with the unique biogeography and history of human occupation for each island, they present a coherent explanation underlying levels of genetic isolation between mainland and island populations. We discuss the relationship of our findings to the suitability of São Tomé and Príncipe islands as candidate sites for potential field trials of genetic-based malaria control strategies.


Asunto(s)
Anopheles/genética , Genética de Población/métodos , Mosquitos Vectores/genética , África/epidemiología , Animales , Anopheles/metabolismo , Evolución Biológica , Evolución Molecular , Variación Genética/genética , Islas/epidemiología , Malaria/transmisión , Filogeografía/métodos , Secuenciación Completa del Genoma/métodos
14.
J Vis Exp ; (170)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33938890

RESUMEN

A recently published DNA extraction protocol using magnetic beads and an automated DNA extraction instrument suggested that it is possible to extract high quality and quantity DNA from a well-preserved individual mosquito sufficient for downstream whole genome sequencing. However, reliance on an expensive automated DNA extraction instrument can be prohibitive for many laboratories. Here, the study provides a budget-friendly magnetic-bead-based DNA extraction protocol, which is suitable for low to medium throughput. The protocol described here was successfully tested using individual Aedes aegypti mosquito samples. The reduced costs associated with high quality DNA extraction will increase the application of high throughput sequencing to resource limited labs and studies.


Asunto(s)
Aedes/genética , ADN/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Animales , Fenómenos Magnéticos
15.
Parasit Vectors ; 14(1): 141, 2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33676552

RESUMEN

BACKGROUND: Since their detection in 2013, Aedes aegypti has become a widespread urban pest in California. The availability of cryptic larval breeding sites in residential areas and resistance to insecticides pose significant challenges to control efforts. Resistance to pyrethroids is largely attributed to mutations in the voltage gated sodium channels (VGSC), the pyrethroid site of action. However, past studies have indicated that VGSC mutations may not be entirely predictive of the observed resistance phenotype. METHODS: To investigate the frequencies of VGSC mutations and the relationship with pyrethroid insecticide resistance in California, we sampled Ae. aegypti from four locations in the Central Valley, and the Greater Los Angeles area. Mosquitoes from each location were subjected to an individual pyrethrum bottle bioassay to determine knockdown times. A subset of assayed mosquitoes from each location was then analyzed to determine the composition of 5 single nucleotide polymorphism (SNP) loci within the VGSC gene. RESULTS: The distribution of knockdown times for each of the five Californian populations sampled was non-parametric with potentially bimodal distributions. One group succumbs to insecticidal effects around 35-45 min and the second group lasts up to and beyond the termination of the assay (120+ min). We detected 5 polymorphic VGSC SNPs within the sampled California populations. One is potentially new and alternatively spliced (I915K), and four are documented and associated with resistance: F1534C, V1016I, V410L and S723T. The Central Valley populations (Clovis, Dinuba, Sanger and Kingsburg) are fairly homogenous with only 5% of the mosquitoes showing heterozygosity at any given position. In the Greater LA mosquitoes, 55% had at least one susceptible allele at any of the five SNP loci. The known resistance allele F1534C was detected in almost all sampled mosquitoes (99.4%). We also observe significant heterogeneity in the knockdown phenotypes of individuals with the identical VGSC haplotypes suggesting the presence of additional undefined resistance mechanisms. CONCLUSIONS: Resistance associated VGSC SNPs are prevalent, particularly in the Central Valley. Interestingly, among mosquitoes carrying all 4 resistance associated SNPs, we observe significant heterogeneity in bottle bioassay profiles suggesting that other mechanisms are important to the individual resistance of Ae. aegypti in California.


Asunto(s)
Aedes/efectos de los fármacos , Aedes/genética , Genotipo , Insecticidas/farmacología , Polimorfismo de Nucleótido Simple/genética , Piretrinas/farmacología , Canales de Sodio Activados por Voltaje/genética , Aedes/metabolismo , Animales , Bioensayo , Femenino , Resistencia a los Insecticidas/genética , Insecticidas/metabolismo , Mosquitos Vectores/genética , Fenotipo , Piretrinas/metabolismo , Canales de Sodio Activados por Voltaje/clasificación
16.
Artículo en Inglés | MEDLINE | ID: mdl-35983564

RESUMEN

Residual vector populations that do not come in contact with the most frequently utilized indoor-directed interventions present major challenges to global malaria eradication. Many of these residual populations are mosquito species about which little is known. As part of a study to assess the threat of outdoor exposure to malaria mosquitoes within the Southern and Central Africa International Centers of Excellence for Malaria Research, foraging female anophelines were collected outside households in Nchelenge District, northern Zambia. These anophelines proved to be more diverse than had previously been reported in the area. In order to further characterize the anopheline species, sequencing and phylogenetic approaches were utilized. Anopheline mosquitoes were collected from outdoor light traps, morphologically identified, and sent to Johns Hopkins Bloomberg School of Public Health for sequencing. Sanger sequencing from 115 field-derived samples yielded mitochondrial COI sequences, which were aligned with a homologous 488 bp gene segment from known anophelines (n = 140) retrieved from NCBI. Nuclear ITS2 sequences (n = 57) for at least one individual from each unique COI clade were generated and compared against NCBI's nucleotide BLAST database to provide additional evidence for taxonomical identity and structure. Molecular and morphological data were combined for assignment of species or higher taxonomy. Twelve phylogenetic groups were characterized from the COI and ITS2 sequence data, including the primary vector species Anopheles funestus s.s. and An. gambiae s.s. An unexpectedly large proportion of the field collections were identified as An. coustani and An. sp. 6. Six phylogenetic groups remain unidentified to species-level. Outdoor collections of anopheline mosquitoes in areas frequented by people in Nchelenge, northern Zambia, proved to be extremely diverse. Morphological misidentification and underrepresentation of some anopheline species in sequence databases confound efforts to confirm identity of potential malaria vector species. The large number of unidentified anophelines could compromise the malaria vector surveillance and malaria control efforts not only in northern Zambia but other places where surveillance and control are focused on indoor-foraging and resting anophelines. Therefore, it is critical to continue development of methodologies that allow better identification of these populations and revisiting and cleaning current genomic databases.

17.
Insects ; 11(12)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33352887

RESUMEN

During their life cycles, microbes infecting mosquitoes encounter components of the mosquito anti-microbial innate immune defenses. Many of these immune responses also mediate susceptibility to malaria parasite infection. In West Africa, the primary malaria vectors are Anopheles coluzzii and A. gambiae sensu stricto, which is subdivided into the Bamako and Savanna sub-taxa. Here, we performed whole genome comparisons of the three taxa as well as genotyping of 333 putatively functional SNPs located in 58 immune signaling genes. Genome data support significantly higher differentiation in immune genes compared with a randomly selected set of non-immune genes among the three taxa (permutation test p < 0.001). Among the 58 genes studied, the majority had one or more segregating mutations (72.9%) that were significantly diverged among the three taxa. Genes detected to be under selection include MAP2K4 and Raf. Despite the genome-wide distribution of immune genes, a high level of linkage disequilibrium (r2 > 0.8) was detected in over 27% of SNP pairs. We discuss the potential role of immune gene divergence as adaptations to the different larval habitats associated with A. gambiae taxa and as a potential force driving ecological speciation in this group of mosquitoes.

19.
Proc Natl Acad Sci U S A ; 117(37): 22805-22814, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32839345

RESUMEN

A Cas9/guide RNA-based gene drive strain, AgNosCd-1, was developed to deliver antiparasite effector molecules to the malaria vector mosquito, Anopheles gambiae The drive system targets the cardinal gene ortholog producing a red-eye phenotype. Drive can achieve 98 to 100% in both sexes and full introduction was observed in small cage trials within 6 to 10 generations following a single release of gene-drive males. No genetic load resulting from the integrated transgenes impaired drive performance in the trials. Potential drive-resistant target-site alleles arise at a frequency <0.1, and five of the most prevalent polymorphisms in the guide RNA target site in collections of colonized and wild-derived African mosquitoes do not prevent cleavage in vitro by the Cas9/guide RNA complex. Only one predicted off-target site is cleavable in vitro, with negligible deletions observed in vivo. AgNosCd-1 meets key performance criteria of a target product profile and can be a valuable component of a field-ready strain for mosquito population modification to control malaria transmission.


Asunto(s)
Anopheles/genética , Tecnología de Genética Dirigida/métodos , Control de Mosquitos/métodos , Alelos , Animales , Animales Modificados Genéticamente/genética , Sistemas CRISPR-Cas/genética , Genética de Población/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Malaria/prevención & control , Mosquitos Vectores/genética , Fenotipo , Transgenes/genética
20.
Artículo en Inglés | MEDLINE | ID: mdl-32527067

RESUMEN

Despite the annual implementation of a robust and extensive indoor residual spraying programme against malaria vectors in Limpopo Province (South Africa), significant transmission continues and is a serious impediment to South Africa's malaria elimination objectives. In order to gain a better understanding regarding possible causes of this residual malaria, we conducted a literature review of the historical species composition and abundance of malaria vector mosquitoes in the Limpopo River Valley region of the Vhembe District, northern Limpopo Province, the region with the highest remaining annual malaria cases in South Africa. In addition, mosquito surveys were carried out in the same region between October 2017 and October 2018. A total of 2225 adult mosquitoes were collected using CO2-baited tent and light traps, human landing catches and cow-baited traps. Of the 1443 Anopheles collected, 516 were members of the An. gambiae complex and 511 An. funestus group. In the malaria endemic rural areas outside the Kruger National Park, one specimen each of An. gambiae s.s. and An. funestus and only three of An. arabiensis were collected. The latter species was abundant at a remote hot spring in the neighboring Kruger National Park. Eighteen other species of Anopheles were collected. Our survey results support the historical findings that An. arabiensis, the species widely held to be the prime malaria vector in South Africa, is a rare species in the malaria endemic Limpopo River Valley. The implications of the mosquito surveys for malaria transmission, elimination and vector control in northern Limpopo Province and neighboring regions are discussed.


Asunto(s)
Anopheles , Malaria , Mosquitos Vectores , Animales , Bovinos , Ambiente , Femenino , Humanos , Malaria/epidemiología , Malaria/transmisión , Control de Mosquitos , Sudáfrica/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...