Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Converg ; 11(1): 20, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782852

RESUMEN

As there is an increasing need for an efficient solver of combinatorial optimization problems, much interest is paid to the Ising machine, which is a novel physics-driven computing system composed of coupled oscillators mimicking the dynamics of the system of coupled electronic spins. In this work, we propose an energy-efficient nano-oscillator, called OTSNO, which is composed of an Ovonic Threshold Switch (OTS) and an electrical resistor. We demonstrate that the OTSNO shows the synchronization behavior, an essential property for the realization of an Ising machine. Furthermore, we have discovered that the capacitive coupling is advantageous over the resistive coupling for the hardware implementation of an Ising solver by providing a larger margin of the variations of components. Finally, we implement an Ising machine composed of capacitively-coupled OTSNOs to demonstrate that the solution to a 14-node MaxCut problem can be obtained in 40 µs while consuming no more than 2.3 µJ of energy. Compared to a previous hardware implementation of the phase-transition nano-oscillator (PTNO)-based Ising machine, the OTSNO-based Ising machine in this work shows the performance of the increased speed by more than one order while consuming less energy by about an order.

2.
Adv Sci (Weinh) ; 9(22): e2201502, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35611436

RESUMEN

In the era of "big data," the cognitive system of the human brain is being mimicked through hardware implementation of highly accurate neuromorphic computing by progressive weight update in synaptic electronics. Low-energy synaptic operation requires both low reading current and short operation time to be applicable to large-scale neuromorphic computing systems. In this study, an energy-efficient synaptic device is implemented comprising a Ni/Pb(Zr0.52 Ti0.48 )O3 (PZT)/0.5 wt.% Nb-doped SrTiO3 (Nb:STO) heterojunction with a low reading current of 10 nA and short operation time of 20-100 ns. Ultralow femtojoule operation below 9 fJ at a synaptic event, which is comparable to the energy required for synaptic events in the human brain (10 fJ), is achieved by adjusting the Schottky barrier between the top electrode and ferroelectric film. Moreover, progressive domain switching in ferroelectric PZT successfully induces both low nonlinearity/asymmetry and good stability of the weight update. The synaptic device developed here can facilitate the development of large-scale neuromorphic arrays for artificial neural networks with low energy consumption and high accuracy.


Asunto(s)
Plasticidad Neuronal , Semiconductores , Computadores , Electrónica , Humanos , Metales , Redes Neurales de la Computación
3.
Chem Commun (Camb) ; 57(72): 9132-9135, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34498626

RESUMEN

Here, new polymers named PBTT-Cn (n = 3, 4, or 5) have been designed based on carboxylate-functionalized thieno[3,2-b]thiophene units. The electroluminescence external quantum efficiencies (EQEEL) of pristine PBTT-C4 and C5 films are over 1 × 10-2, which are among the highest results for OPV materials. Through combination with BTP-eC9, the PBTT-C4-based film showed a high EQEEL of 6 × 10-4 and the Vnon-radloss is 0.19 eV. As a result, a high open-circuit voltage of 0.89 V and a satisfactory PCE of 15% were recorded in the PBTT-C4-based OPV cells.

4.
ACS Appl Mater Interfaces ; 13(36): 43174-43185, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34460240

RESUMEN

Two kinds of dumbbell-shaped acceptor-donor-acceptor (A-D-A)-type triad single-component (SC) photovoltaic molecules based on a benzodithiophene-rhodanine (BDTRh) core and [6,6]-phenyl-C61 butyric acid (PC61BA) termini, BDTRh-C2-PC61BA and BDTRh-C10-PC61BA, were synthesized by modulating the alkyl (C2 and C10) spacer lengths. Both SC photovoltaic structures had similar UV-vis spectra in solution, but BDTRh-C10-PC61BA showed a significantly higher absorption coefficient as a thin film. In films, a more facile intermolecular photo-induced charge transfer was observed for BDTRh-C10-PC61BA in the broad-band transient absorption measurements. BDTRh-C10-PC61BA also exhibited a higher hole mobility (by 25 times) and less bimolecular recombination than BDTRh-C2-PC61BA. By plotting the normalized external quantum efficiency data, a higher charge-transfer state was measured for BDTRh-C10-PC61BA, reducing its voltage loss. A higher power conversion efficiency of ∼2% was obtained for BDTRh-C10-PC61BA, showing higher open-circuit voltage, short-circuit current density, and fill factor than those of BDTRh-C2-PC61BA devices. The different carrier dynamics, voltage loss, and optical and photoelectrical characteristics depending on the spacer length were interpreted in terms of the film morphology. The longer decyl spacer in BDTRh-C10-PC61BA afforded a significantly enhanced intermolecular ordering of the p-type core compared to BDTRh-C2-PC61BA, suggesting that the alkyl spacer length plays a critical role in controlling the intermolecular packing interaction.

5.
ACS Appl Mater Interfaces ; 12(32): 36660-36669, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32686933

RESUMEN

Using simple graphene transfer and the laser lift-off process for a non-centrosymmetric GaN layer on a flexible polydimethylsiloxane (PDMS) substrate, the piezotronic effect by strain-induced current-voltage measurements at the two end points is studied. By inducing compressive strain on the flexible graphene/GaN/PDMS sensor, the Schottky barrier between the graphene and GaN/PDMS heterojunction can be electro-mechanically modulated by the piezotronic effect. It is observed that the flexible graphene/GaN/PDMS sensor is sensitive to various applied compressive and tensile strains in the positive/negative bias scans. The sensor is extremely sensitive to a compressive strain of -0.1% with a gauge factor of 13.48, which is 3.7 times higher than that of a standard metal strain gauge. Furthermore, the sharp response of the flexible graphene/GaN/PDMS sensor under the -0.1% compressive strain is also investigated. The results of this study herald the development of commercially viable large-scale flexible/wearable strain sensors based on the strain-controlled piezotronic effect in future investigations.

6.
Nanoscale ; 12(24): 12928-12941, 2020 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-32525186

RESUMEN

Optimizing the nanostructure of the active layer of polymer solar cells (PSCs) is one of the main challenges to achieve high device performances. The phase separation of the donor polymer and molecular acceptor within the bulk heterojunction (BHJ) layer is often driven by the crystallisation of the acceptor molecules. Hence, a suitable crystallisation tendency of the chosen acceptor is ultimately important. In this work, we identified melting temperature as an indicator for the crystallisation tendency and introduced extended fused-aromatic rings to the end groups of the nonfullerene acceptor molecule to enhance the intermolecular binding energy as well as its crystallisation tendency. The crystallinity, crystal regularity and average crystal size were significantly increased for those molecules with larger fused end groups. The devices containing molecule IDTTC with two fused thiophene rings, which displayed intermediate crystallisation tendency, were found to possess an optimized phase separation scale, balanced hole/electron mobility and highest device performances with the fill factor as high as 73.2% and a power conversion efficiency of 13.49%. With the above observations, we established a new route and paradigm to adjust the crystallisation tendency and BHJ nanostructure of nonfullerene acceptor molecules, thus enhancing the device performances through molecular engineering.

7.
Chemistry ; 26(49): 11241-11249, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32227512

RESUMEN

In this work, a series of sole benzodithiophene-based wide band gap polymer donors, namely PBDTT, PBDTS, PBDTF and PBDTCl, were developed for efficient polymer solar cells (PSCs) by varying the heteroatoms into the conjugated side chains. The effects of sulfuration, fluorination and chlorination were also investigated systematically on the overall properties of these BDT-based polymers. The HOMO levels could be lowered gradually by introducing sulfur, fluorine and chlorine atoms into the side chains, which contributed to the stepwise increased Voc (from 0.78 V to 0.84 V) in the related PSCs using Y6 as the electron acceptor. This side-chain engineering strategy could promote the polymer chain interactions and fine-tune the phase separation of active blends, leading to enhanced absorption, ordered molecular packing and crystallinity. Among them, the chlorinated PBDTCl exhibited not only high level absorption and crystallinity, but also the most balanced hole/electron charge transport and the most optimized morphology, giving rise to the best PCE of 13.46 % with a Voc of 0.84 V, a Jsc of 23.16 mA cm-2 and an FF of 69.2 %. The chlorination strategy afforded PBDTCl synthetic simplicity but high efficiency, showing its promising photovoltaic applications for realizing low-cost practical PSCs in near future.

8.
Adv Sci (Weinh) ; 7(4): 1902470, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32099759

RESUMEN

A highly crystalline conjugated donor (D)-acceptor (A) block copolymer (PBDT2T-b-N2200) that has good solubility in nonhalogenated solvents is successfully synthesized. PBDT2T-b-N2200 shows a broad complementary absorption behavior owing to a wide-band gap donor (PBDT2T) present as a D-block and a narrow-band gap acceptor (N2200) present as an A-block. Polymer solar cells (PSCs) with conjugated block copolymer (CBCP) are fabricated using a toluene solution and PSC created with an annealed film showing the highest power conversion efficiency of 6.43%, which is 2.4 times higher than that made with an annealed blend film of PBDT2T and N2200. Compared to the blend film, the PBDT2T-b-N2200 film exhibits a highly improved surface and internal morphology, as well as a faster photoluminescence decay lifetime, indicating a more efficient photoinduced electron transfer. In addition, the PBDT2T-b-N2200 film shows high crystallinity through an effective self-assembly of each block during thermal annealing and a predominant face-on chain orientation favorable to a vertical-type PSC. Moreover, the CBCP-based PSCs exhibit an excellent shelf-life time of over 1020 h owing to their morphological stability. From these results, a D-A block copolymer system is one of the efficient strategies to improve miscibility and morphological stability in all polymer blend systems.

9.
ACS Appl Mater Interfaces ; 11(50): 47170-47181, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31738512

RESUMEN

We design and synthesize a series of regioisomeric n-type small molecules, which have an identical diketopyrrolopyrrole (DPP) core and 2-(2,3-dihydro-3-oxo-1H-inden-1-ylidene)propanedinitrile (INCN) terminal groups with octyl substituents at different positions. The isomeric structures are confirmed by two-dimensional NMR spectroscopy based on the heteronuclear multiple-bond coupling method. Incorporation of the electron-deficient DPP and strongly electron-withdrawing INCN groups yields deep frontier molecular orbitals with n-type charge-transport properties in solution-processed organic field-effect transistors (OFETs). Interestingly, a minor change in the substitution position of the octyl side chains significantly influences the optoelectronic and morphological properties of the thin film. The polycrystalline morphology of the as-cast films is reorganized differently with thermal annealing depending on the octyl topology, significantly affecting the OFET performance. With thermal treatment at 200 °C, the kinked DPP(EH)-INCNO1 (EH = 2-ethylhexyl) structures transform into single crystalline-like structures, exhibiting a remarkably improved electron mobility up to ∼0.6 cm2V-1 s-1 compared with DPP(EH)-INCNO2 isomers. The more linear DPP(EH or HD)-INCNO2 (HD = 2-hexyldecyl) molecules become more crystalline with thermal treatments, but their polycrystalline packing structures with large grain boundaries are the main reason for their lower electron mobility. When the solubilizing alkyl substituents are selected, careful molecular design is needed, with consideration of both the solubility and intermolecular packing, for optimizing the optoelectronic properties.

10.
ACS Appl Mater Interfaces ; 11(3): 3308-3316, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30584758

RESUMEN

In this work, a new but excellent donor block dithienothiapyran (DTTP) was developed for constructing highly efficient wide band gap copolymer donors. Compared to dithienopyran (DTP), DTTP features weaken electron-donating ability and more planar-conjugated backbones. Polymer-fluorinated benzotriazole (FBTA) based on DTTP exhibits lower highest occupied molecular orbital level (-5.30 vs -5.21 eV), higher molar extinction coefficient (1.54 × 105 vs 8.65 × 104 M-1 cm-1), and better crystallinity than -FBTA based on DTP, thus producing a higher device performance of 10.51% in binary blend nonfullerene polymer solar cells (NF-PSCs) blended with IT-M. To improve the absorption strength of PDTTP-FBTA: devices in the shorter wavelength range and further optimize the blend morphology, a small molecule of , which has strong absorption at short wavelength (300-600 nm), was incorporated. Finally, the performance of the ternary blends was successfully enhanced to 11.57% and a very high fill factor of 76.5%. Our work provided a new but excellent donor block for building high-performance conjugated copolymers to achieve highly efficient NF-PSCs.

11.
ACS Appl Mater Interfaces ; 10(46): 39952-39961, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30379525

RESUMEN

In this study, we synthesized two acceptor-donor-acceptor (A-D-A)-type small molecules (SMs) (P3T4-VCN and P3T4-INCN) with different terminal end-groups (dicyanovinyl (VCN) and 2-methylene-3-(1,1-dicyanomethylene)indanone (INCN)) based on the 1,4-bis(thiophenylphenylthiophene)-2,5-difluorophenylene (P3T4) core that possesses high coplanarity because of intrachain noncovalent Coulombic interactions. We investigated the influence of terminal end-groups on intermolecular packing and the resulting electrical and photovoltaic characteristics. A small change in the end-group structure of the SMs induces a significant variation in the torsional structures, molecular packing, and pristine/blend film morphology. It is noteworthy that the less crystalline P3T4-INCN with tilted conformation is highly sensitive to post-treatments (i.e., additives and annealing) such that it permits facile morphological modulation. However, the highly planar and crystalline P3T4-VCN exhibits a strong tolerance toward processing treatments. After morphology optimization, the fullerene-based bulk-heterojunction solar cell of tilted P3T4-INCN exhibits a power conversion efficiency (PCE) of 5.68%, which is significantly superior to that of P3T4-VCN:PC71BM (PCE = 1.29%). Our results demonstrate the importance of the terminal end-group for the design of A-D-A-type SMs and their sensitivity toward the postprocessing treatments in optimizing their performance.

12.
J Microbiol Biotechnol ; 28(3): 367-374, 2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-29316746

RESUMEN

RNA interference provides an effective tool for developing antitumor therapies. Cell-penetrating peptides (CPPs) are delivery vectors widely used to efficiently transport small-interfering RNA (siRNA) to intracellular targets. In this study, we investigated the efficacy of the cancer-specific CPP carrier BR2 to specifically transport siRNA to cancer-target cells. Our results showed that BR2 formed a complex with anti-vascular endothelial growth factor siRNA (siVEGF) that exhibited the appropriate size and surface charge for in vivo treatment. Additionally, the BR2-VEGF siRNA complex exhibited significant serum stability and high levels of gene-silencing effects in vitro. Moreover, the transfection efficiency of the complex into a cancer cell line was higher than that observed in non-cancer cell lines, resulting in downregulated intracellular VEGF levels in HeLa cells and comprehensively improved antitumor efficacy in the absence of significant toxicity. These results indicated that BR2 has significant potential for the safe, efficient, and specific delivery of siRNA for diverse applications.


Asunto(s)
Antineoplásicos/farmacología , Péptidos de Penetración Celular/farmacología , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Péptidos/farmacología , ARN Interferente Pequeño/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Secuencia de Aminoácidos , Animales , Transporte Biológico , Línea Celular Tumoral , Estabilidad de Medicamentos , Silenciador del Gen/efectos de los fármacos , Células HeLa/efectos de los fármacos , Células HeLa/metabolismo , Humanos , Ratones , Células 3T3 NIH , Nanopartículas , Tamaño de la Partícula , Péptidos/química , Transfección
13.
Amino Acids ; 46(10): 2333-43, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24952727

RESUMEN

Infected wounds cause delay in wound closure and impose significantly negative effects on patient care and recovery. Antimicrobial peptides (AMPs) with antimicrobial and wound closure activities, along with little opportunity for the development of resistance, represent one of the promising agents for new therapeutic approaches in the infected wound treatment. However, therapeutic applications of these AMPs are limited by their toxicity and low stability in vivo. Previously, we reported that the 19-amino-acid designer peptide SHAP1 possessed salt-resistant antimicrobial activities. Here, we analyzed the wound closure activities of SHAP1 both in vitro and in vivo. SHAP1 did not affect the viability of human erythrocytes and keratinocytes up to 200 µM, and was not digested by exposure to proteases in the wound fluid, such as human neutrophil elastase and Staphylococcus aureus V8 proteinase for up to 12 h. SHAP1 elicited stronger wound closure activity than human cathelicidin AMP LL-37 in vitro by inducing HaCaT cell migration, which was shown to progress via transactivation of the epidermal growth factor receptor. In vivo analysis revealed that SHAP1 treatment accelerated closure and healing of full-thickness excisional wounds in mice. Moreover, SHAP1 effectively countered S. aureus infection and enhanced wound healing in S. aureus-infected murine wounds. Overall, these results suggest that SHAP1 might be developed as a novel topical agent for the infected wound treatment.


Asunto(s)
Antiinfecciosos Locales/uso terapéutico , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Queratinocitos/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico , Cicatrización de Heridas/efectos de los fármacos , Infección de Heridas/tratamiento farmacológico , Animales , Antiinfecciosos Locales/efectos adversos , Antiinfecciosos Locales/farmacología , Péptidos Catiónicos Antimicrobianos/efectos adversos , Péptidos Catiónicos Antimicrobianos/farmacología , Catelicidinas/efectos adversos , Catelicidinas/farmacología , Catelicidinas/uso terapéutico , Línea Celular , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Estabilidad de Medicamentos , Eritrocitos/efectos de los fármacos , Femenino , Hemólisis/efectos de los fármacos , Humanos , Queratinocitos/citología , Ratones Endogámicos BALB C , Estabilidad Proteica , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Infección de Heridas/microbiología
14.
PLoS One ; 8(6): e66084, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23776609

RESUMEN

Cell-penetrating peptides (CPPs) have proven very effective as intracellular delivery vehicles for various therapeutics. However, there are some concerns about non-specific penetration and cytotoxicity of CPPs for effective cancer treatments. Herein, based on the cell-penetrating motif of an anticancer peptide, buforin IIb, we designed several CPP derivatives with cancer cell specificity. Among the derivatives, a 17-amino acid peptide (BR2) was found to have cancer-specificity without toxicity to normal cells. After specifically targeting cancer cells through interaction with gangliosides, BR2 entered cells via lipid-mediated macropinocytosis. Moreover, BR2 showed higher membrane translocation efficiency than the well-known CPP Tat (49-57). The capability of BR2 as a cancer-specific drug carrier was demonstrated by fusion of BR2 to a single-chain variable fragment (scFv) directed toward a mutated K-ras (G12V). BR2-fused scFv induced a higher degree of apoptosis than Tat-fused scFv in K-ras mutated HCT116 cells. These results suggest that the novel cell-penetrating peptide BR2 has great potential as a useful drug delivery carrier with cancer cell specificity.


Asunto(s)
Péptidos de Penetración Celular/metabolismo , Anticuerpos de Cadena Única/metabolismo , Apoptosis/fisiología , Western Blotting , Proliferación Celular , Péptidos de Penetración Celular/química , Endocitosis/fisiología , Células HCT116 , Células HeLa , Hemólisis/fisiología , Humanos , Microscopía Confocal , Anticuerpos de Cadena Única/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...