Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38791598

RESUMEN

CIGB-258, a 3 kDa peptide from heat shock protein 60, exhibits synergistic anti-inflammatory activity with apolipoprotein A-I (apoA-I) in reconstituted high-density lipoproteins (rHDLs) via stabilization of the rHDL structure. This study explored the interactions between CIGB-258 and apoA-I in the lipid-free state to assess their synergistic effects in the structural and functional enhancement of apoA-I and HDL. A co-treatment of lipid-free apoA-I and CIGB-258 inhibited the cupric ion-mediated oxidation of low-density lipoprotein (LDL) and a lowering of oxidized species in the dose-responsive manner of CIGB-258. The co-presence of CIGB-258 caused a blue shift in the wavelength of maximum fluorescence (WMF) of apoA-I with protection from proteolytic degradation. The addition of apoA-I:CIGB-258, with a molar ratio of 1:0.1, 1:0.5, and 1:1, to HDL2 and HDL3 remarkably enhanced the antioxidant ability against LDL oxidation up to two-fold higher than HDL alone. HDL-associated paraoxonase activities were elevated up to 28% by the co-addition of apoA-I and CIGB-258, which is linked to the suppression of Cu2+-mediated HDL oxidation with the slowest electromobility. Isothermal denaturation by a urea treatment showed that the co-presence of CIGB-258 attenuated the exposure of intrinsic tryptophan (Trp) and increased the mid-points of denaturation from 2.33 M for apoA-I alone to 2.57 M for an apoA-I:CIGB-258 mixture with a molar ratio of 1:0.5. The addition of CIGB-258 to apoA-I protected the carboxymethyllysine (CML)-facilitated glycation of apoA-I with the prevention of Trp exposure. A co-treatment of apoA-I and CIGB-258 synergistically safeguarded zebrafish embryos from acute death by CML-toxicity, suppressing oxidative stress and apoptosis. In adult zebrafish, the co-treatment of apoA-I+CIGB-258 exerted the highest anti-inflammatory activity with a higher recovery of swimming ability and survivability than apoA-I alone or CIGB-258 alone. A co-injection of apoA-I and CIGB-258 led to the lowest infiltration of neutrophils and interleukin (IL)-6 generation in hepatic tissue, with the lowest serum triglyceride, aspartate transaminase, and alanine transaminase levels in plasma. In conclusion, the co-presence of CIGB-258 ameliorated the beneficial functionalities of apoA-I, such as antioxidant and anti-glycation activities, by enhancing the structural stabilization and protection of apoA-I. The combination of apoA-I and CIGB-258 synergistically enforced the anti-inflammatory effect against CML toxicity in embryos and adult zebrafish.


Asunto(s)
Antiinflamatorios , Antioxidantes , Apolipoproteína A-I , Lipoproteínas HDL , Pez Cebra , Apolipoproteína A-I/metabolismo , Apolipoproteína A-I/química , Animales , Antioxidantes/farmacología , Antioxidantes/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Lipoproteínas HDL/metabolismo , Lipoproteínas HDL/química , Lipoproteínas LDL/metabolismo , Oxidación-Reducción/efectos de los fármacos , Sinergismo Farmacológico
2.
Sci Adv ; 10(7): eadk6714, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38354246

RESUMEN

Achieving large-scale, cost-effective, and reproducible manufacturing of stem cells with the existing devices is challenging. Traditional single-use cell-bag bioreactors, limited by their rigid and single-point sensors, struggle with accuracy and scalability for high-quality cell manufacturing. Here, we introduce a smart bioreactor system that enables multi-spatial sensing for real-time, wireless culture monitoring. This scalable system includes a low-profile, label-free thin-film sensor array and electronics integrated with a flexible cell bag, allowing for simultaneous assessment of culture properties such as pH, dissolved oxygen, glucose, and temperature, to receive real-time feedback for up to 30 days. The experimental results show the accurate monitoring of time-dynamic and spatial variations of stem cells and myoblast cells with adjustable carriers from a plastic dish to a 2-liter cell bag. These advances open up the broad applicability of the smart sensing system for large-scale, lower-cost, reproducible, and high-quality engineered cell manufacturing for broad clinical use.


Asunto(s)
Electrónica , Dispositivos Electrónicos Vestibles , Técnicas de Cultivo de Célula , Reactores Biológicos , Células Madre
3.
Small ; : e2308375, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38073328

RESUMEN

The demand for self-powered photodetectors (PDs) capable of NIR detection without external power is growing with the advancement of NIR technologies such as LIDAR and object recognition. Lead sulfide quantum dot-based photodetectors (PbS QPDs) excel in NIR detection; however, their self-powered operation is hindered by carrier traps induced by surface defects and unfavorable band alignment in the zinc oxide nanoparticle (ZnO NP) electron-transport layer (ETL). In this study, an effective azide-ion (N3 - ) treatment is introduced on a ZnO NP ETL to reduce the number of traps and improve the band alignment in a PbS QPD. The ZnO NP ETL treated with azide ions exhibited notable improvements in carrier lifetime and mobility as well as an enhanced internal electric field within the thin-film heterojunction of the ZnO NPs and PbS QDs. The azide-ion-treated PbS QPD demonstrated a increase in short-circuit current density upon NIR illumination, marking a responsivity of 0.45 A W-1 , specific detectivity of 4 × 1011 Jones at 950 nm, response time of 8.2 µs, and linear dynamic range of 112 dB.

4.
Biosens Bioelectron ; 241: 115650, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37717424

RESUMEN

Atherosclerosis is a prominent cause of coronary artery disease and broader cardiovascular diseases, the leading cause of death worldwide. Angioplasty and stenting is a common treatment, but in-stent restenosis, where the artery re-narrows, is a frequent complication. Restenosis is detected through invasive procedures and is not currently monitored frequently for patients. Here, we report an implantable vascular bioelectronic device using a newly developed miniaturized strain sensor via microneedle printing methods. A capillary-based printing system achieves high-resolution patterning of a soft, capacitive strain sensor. Ink and printing parameters are evaluated to create a fully printed sensor, while sensor design and sensing mechanism are studied to enhance sensitivity and minimize sensor size. The sensor is integrated with a wireless vascular stent, offering a biocompatible, battery-free, wireless monitoring system compatible with conventional catheterization procedures. The vascular sensing system is demonstrated in an artery model for monitoring restenosis progression. Collectively, the artery implantable bioelectronic system shows the potential for wireless, real-time monitoring of various cardiovascular diseases and stent-integrated sensing/treatments.

5.
Acta Biomater ; 171: 406-416, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37739252

RESUMEN

A visible light- and reactive oxygen species (ROS)-responsive pressure/strain sensor based on carbon dot (CD)-loaded conductive hydrogel was developed for detecting high-fat diet (HFD) and preventing the risk of non-alcoholic fatty liver disease. The designed nanoparticle consisted of a diselenide polymer dot (dsPD) loaded with a visible light-responsive CD to form dsPD@CD (DSCD). The influence of visible light irradiation and ROS on DSCD facilitated the electron transport, enhancing the conductivity of DSCD-embedded hydrogel (DSCD hydrogel) from 1.3 to 35.9 mS/m. Alternatively, the tensile modulus of the DSCD hydrogel enhanced to 223 % after light-induced ROS treatment, which simultaneously impacted the capacitive response (120 %). The hydrogel implantation into inguinal white adipose tissue of HFD mice showed 82 % higher conductivity and 83 % enhanced pressure sensing response to HFD-generated high ROS levels compared with the normal diet-fed mice. Additionally, the ROS scavenging activity of DSCD hydrogel was confirmed by the downregulation of ROS-responsive genes, such as Sod2, Nrf2, and catalase (Cat) in murine primary hepatocytes isolated from fatty liver-induced mice. In addition, in vivo animal studies also confirmed the suppression of hepatic lipogenesis, as shown by decreased Pparγ and Fasn expression and hypertrophy of adipocytes in HFD mice. The distinguishable real-time wireless resistance response observed with pressure sensing indicates the potential application of the device for monitoring the risk of non-alcoholic fatty liver disease. STATEMENT OF SIGNIFICANCE: A visible-light-induced ROS-responsive carbon dot-loaded conductive hydrogel was developed for the detection of HFD-induced alterations in ROS levels by evaluating the conductivity and electrochemical responses with applied pressure/strain. The implanted hydrogel facilitates the recovery of the inflated adipocytes induced by NAFLD, which reduces fat accumulation in the liver, preventing the risk of NAFLD. Real-time detection based on the resistance response during local compression of the hydrogel is possibly performed utilizing a wireless sensing device, demonstrating the ease of NAFLD monitoring.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Hidrogeles/farmacología , Hidrogeles/metabolismo , Hígado/metabolismo , Tejido Adiposo/metabolismo , Carbono , Ratones Endogámicos C57BL
6.
Exp Mol Med ; 55(6): 1099-1109, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37258584

RESUMEN

Peptides exhibit lower affinity and a shorter half-life in the body than antibodies. Conversely, peptides demonstrate higher efficiency in tissue penetration and cell internalization than antibodies. Regardless of the pros and cons of peptides, they have been used as tumor-homing ligands for delivering carriers (such as nanoparticles, extracellular vesicles, and cells) and cargoes (such as cytotoxic peptides and radioisotopes) to tumors. Additionally, tumor-homing peptides have been conjugated with cargoes such as small-molecule or chemotherapeutic drugs via linkers to synthesize peptide-drug conjugates. In addition, peptides selectively bind to cell surface receptors and proteins, such as immune checkpoints, receptor kinases, and hormone receptors, subsequently blocking their biological activity or serving as hormone analogs. Furthermore, peptides internalized into cells bind to intracellular proteins and interfere with protein-protein interactions. Thus, peptides demonstrate great application potential as multifunctional players in cancer therapy.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Péptidos/uso terapéutico , Péptidos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Receptores de Superficie Celular , Hormonas
7.
Regen Biomater ; 9: rbac069, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36226164

RESUMEN

The dual role of reactive oxygen and nitrogen species (RONS) in physiological and pathological processes in biological systems has been widely reported. It has been recently suggested that the regulation of RONS levels under physiological and pathological conditions is a potential therapy to promote health and treat diseases, respectively. Injectable hydrogels have been emerging as promising biomaterials for RONS-related biomedical applications owing to their excellent biocompatibility, three-dimensional and extracellular matrix-mimicking structures, tunable properties and easy functionalization. These hydrogels have been developed as advanced injectable platforms for locally generating or scavenging RONS, depending on the specific conditions of the target disease. In this review article, the design principles and mechanism by which RONS are generated/scavenged from hydrogels are outlined alongside a discussion of their in vitro and in vivo evaluations. Additionally, we highlight the advantages and recent developments of these injectable RONS-controlling hydrogels for regenerative medicines and tissue engineering applications.

8.
J Control Release ; 337: 676-685, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34375689

RESUMEN

Despite their high efficacy and safety, long-acting contraceptive methods are underutilized among women in some settings because they usually require injection or implantation by healthcare personnel. Here, we report a self-administrable microneedle (MN) patch for the rapid administration of a sustained-release contraceptive hormone delivery system into the skin that increases the simplicity and reliability of the MN delivery. We developed an immediate microneedle detachment system using a porous patch backing that has sufficient strength during MN insertion into skin under compression, but enables immediate detachment (< 1 s) of the MNs due to fracture at the MN - backing interface upon patch removal under tension from the skin surface. After patch application, the removed patch produced no biohazardous sharps waste, and was designed to achieve long-acting contraception by formulating poly(lactic-co-glycolic acid) MNs to slowly release the contraceptive hormone levonorgestrel for up to 1 month. Our combined strategy using immediate MN detachment in the skin and sustained drug delivery from the MNs could facilitate greater access to long-acting contraception by providing a simple and convenient option for self-administered, long-acting contraception.


Asunto(s)
Anticonceptivos , Piel , Administración Cutánea , Sistemas de Liberación de Medicamentos , Femenino , Hormonas , Humanos , Agujas , Reproducibilidad de los Resultados
9.
Theranostics ; 11(3): 1326-1344, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33391537

RESUMEN

CD44v6, a splice variant of the cell surface glycoprotein CD44, acts as a co-receptor for c-Met and is upregulated in tumors with high metastatic potential. Methods: We screened a phage-displayed peptide library for peptides that selectively bind to CD44v6-overexpressing cells and exploited them to block CD44v6 and deliver a pro-apoptotic peptide to tumors for cancer therapy. Results: CNLNTIDTC (NLN) and CNEWQLKSC (NEW) peptides bound preferentially to CD44v6-high cells than to CD44v6-low cells. The binding affinities of NLN and NEW to CD44v6 protein were 253 ± 79 and 85 ± 18 nM, respectively. Peptide binding to CD44v6-high cells was inhibited by the knockdown of CD44v6 gene expression and competition with an anti-CD44v6 antibody. A pull-down assay with biotin-labeled peptides enriched CD44v6 from cell lysates. NLN and NEW induced CD44v6 internalization and inhibited hepatocyte growth factor-induced c-Met internalization, c-Met and Erk phosphorylation, and cell migration and invasion. In mice harboring tumors, intravenously administered NLN and NEW homed to the tumors and inhibited metastasis to the lungs. When combined with crizotinib, a c-Met inhibitor, treatment with each peptide inhibited metastatic growth more efficiently than each peptide or crizotinib alone. In addition, KLAKLAKKLAKLAK pro-apoptotic peptide guided by NLN (NLN-KLA) or NEW (NEW-KLA) killed tumor cells and inhibited tumor growth and metastasis. No significant systemic side effects were observed after treatments. Conclusions: These results suggest that NLN and NEW are promising metastasis-inhibiting peptide therapeutics and targeting moieties for CD44v6-expressing metastases.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Receptores de Hialuranos/metabolismo , Metástasis de la Neoplasia/prevención & control , Péptidos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Animales , Línea Celular , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Crizotinib/farmacología , Femenino , Células HEK293 , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas Proto-Oncogénicas c-met/metabolismo , Regulación hacia Arriba/efectos de los fármacos
10.
J Mater Chem B ; 8(48): 11033-11043, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33196075

RESUMEN

Injectable hydrogels can serve as therapeutic vehicles and implants for the treatment of various diseases as well as for tissue repair/regeneration. In particular, the horseradish peroxidase (HRP) and hydrogen peroxide (H2O2)-catalyzed hydrogelation system has attracted much attention, due to its ease of handling and controllable gel properties. In this study, we introduce calcium peroxide (CaO2) as a H2O2-generating reagent to gradually supply a radical source for the HRP-catalyzed crosslinking reaction. This novel therapy can create stiff hydrogels without compromising the cytocompatibility of the hydrogels due to the use of initially high concentrations of H2O2. The physico-chemical properties of the hydrogels can be controlled by varying the concentrations of HRP and CaO2. In addition, the controlled and sustained release of bioactive molecules, including H2O2, O2, and Ca2+ ions, from the hydrogels could stimulate the cellular behaviors (attachment, migration, and differentiation) of human mesenchymal stem cells. Moreover, the hydrogels exhibited killing efficacy against both Gram-negative and Gram-positive bacteria, dependent on the H2O2 and Ca2+ release amounts. These positive results suggest that hydrogels formed by HRP/CaO2 can be used as potential matrices for a wide range of biomedical applications, such as bone regeneration and infection treatment.


Asunto(s)
Antibacterianos/síntesis química , Hidrogeles/síntesis química , Células Madre Mesenquimatosas/efectos de los fármacos , Peróxidos/síntesis química , Antibacterianos/farmacología , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Humanos , Hidrogeles/farmacología , Células Madre Mesenquimatosas/fisiología , Peróxidos/farmacología , Streptococcus/efectos de los fármacos , Streptococcus/fisiología
12.
ACS Appl Bio Mater ; 3(3): 1646-1655, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35021655

RESUMEN

Current stem cell-based therapy for cardiac repair and regeneration after myocardial infarction (MI) is not readily translatable into clinical scenarios due to the low retention and survival of the transplanted cells. Here, we evaluated a simple and feasible design of gelatin-hydroxyphenyl propionic acid (GH) hydrogel as an in situ cross-linkable and injectable cell delivery platform for cardiac tissue regeneration. The GH hydrogel exhibited improved cell retention and survival in vitro and in vivo when encapsulating mouse bone marrow-derived mesenchymal stem cells (MSCs) that were used as promising therapeutic candidates for stem cell therapy. Moreover, we demonstrated that MSC-encapsulating GH hydrogels led to a significant improvement in cardiac functional metrics, such as the fractional shortening (FS), ejection fraction (EF), and end-systolic volume (ESV). Similarly, MSC-encapsulating GH hydrogels induced favorable effects in the cardiac structures of the infarcted heart, producing less fibrosis and thicker infarcted walls. These results suggest that GH hydrogels can be used as an instructive cell delivery platform to provide a suitable microenvironment for transplanted cells; therefore, their in vivo applications combined with MSCs may provide great potential for repair and regeneration of injured cardiac tissues after MI.

13.
Adv Funct Mater ; 30(46)2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38053980

RESUMEN

Exposure of aged mice to a young systemic milieu revealed remarkable rejuvenation effects on aged tissues, including skeletal muscle. Although some candidate factors have been identified, the exact identity and the underlying mechanisms of putative rejuvenating factors remain elusive, mainly due to the complexity of in vivo parabiosis. Here, we present an in vitro muscle parabiosis system that integrates young- and old-muscle stem cell vascular niche on a three-dimensional microfluidic platform designed to recapitulate key features of native muscle stem cell microenvironment. This innovative system enables mechanistic studies of cellular dynamics and molecular interactions within the muscle stem cell niche, especially in response to conditional extrinsic stimuli of local and systemic factors. We demonstrate that vascular endothelial growth factor (VEGF) signaling from endothelial cells and myotubes synergistically contribute to the rejuvenation of the aged muscle stem cell function. Moreover, with the adjustable on-chip system, we can mimic both blood transfusion and parabiosis and detect the time-varying effects of anti-geronic and pro-geronic factors in a single organ or multi-organ systems. Our unique approach presents a complementary in vitro model to supplement in vivo parabiosis for identifying potential anti-geronic factors responsible for revitalizing aging organs.

14.
Acta Biomater ; 103: 142-152, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31846801

RESUMEN

The overexpression of reactive oxygen species (ROS) contributes to the pathogenesis of numerous diseases such as atherosclerosis, myocardial infarction, cancer, and chronic inflammation. Therefore, the development of materials that can locally control the adverse effects resulting from excessive ROS generation is of great significance. In this study, the antioxidant gallic acid-conjugated gelatin (GGA) was introduced into gelatin-hydroxyphenyl propionic (GH) hydrogels to create an injectable hydrogel with enhanced free radical scavenging properties compared to pure GH hydrogels. The modified hydrogels were rapidly formed by an HRP-catalyzed cross-linking reaction with high mechanical strength and biodegradability. The resulting GH/GGA hydrogels effectively scavenged the hydroxyl radicals and DPPH radicals, and the scavenging capacity could be modulated by varying GGA concentrations. Moreover, in an in vitro H2O2-induced ROS microenvironment, GH/GGA hydrogels significantly suppressed the oxidative damage of human dermal fibroblast (hDFBs) and preserved their viability by reducing intracellular ROS production. More importantly, the ROS scavenging hydrogel efficiently accelerated the wound healing process with unexpected regenerative healing characteristics, shown by hair follicle formation; promoted neovascularization; and highly ordered the alignment of collagen fiber in a full-thickness skin defect model. Therefore, we expect that injectable GH/GGA hydrogels can serve as promising biomaterials for tissue regeneration applications, including wound treatment and other tissue repair related to ROS overexpression. STATEMENT OF SIGNIFICANCE: Recently, many researchers have endeavored to develop injectable hydrogel matrices that can modulate the ROS level to normal physiological processes for the treatment of various diseases. Here, we designed an injectable gelatin hydrogel in which gallic acid, an antioxidant compound, was conjugated onto a gelatin polymer backbone. The hydrogels showed tunable properties and could scavenge the free radicals in a controllable manner. Because of the ROS scavenging properties, the hydrogels protected the cells from the oxidative damage of ROS microenvironment and effectively accelerated the wound healing process with high quality of healed skin. We believe that this injectable ROS scavenging hydrogel has great potential for wound treatment and tissue regeneration, where oxidative damage by ROS contributes to the pathogenesis.


Asunto(s)
Gelatina/farmacología , Hidrogeles/farmacología , Especies Reactivas de Oxígeno/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Animales , Muerte Celular/efectos de los fármacos , Femenino , Fibroblastos/efectos de los fármacos , Depuradores de Radicales Libres/farmacología , Ácido Gálico/química , Ácido Gálico/farmacología , Humanos , Inyecciones , Ensayo de Materiales , Ratones Endogámicos C57BL , Fenilpropionatos/química , Fenilpropionatos/farmacología , Polímeros/síntesis química , Polímeros/química , Sustancias Protectoras/farmacología , Porcinos , Factores de Tiempo
15.
Microb Pathog ; 137: 103784, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31600538

RESUMEN

Bioluminescence imaging is a non-invasive tool for in vivo real-time monitoring of infectious disease progression in animal models. However, no bioluminescence imaging assay has been developed to monitor Acinetobacter baumannii infections. In the current study, bioluminescent strains of A. baumannii ATCC 17978 and its isogenic ΔompA mutant were constructed by integrating the promoter of the ompA gene and the luxCDABE luciferase gene into the bacterial chromosome. In an acute murine pneumonia model, bioluminescence of the two reporter strains was clearly visible in the lungs and the bioluminescent signal increased over time. Bioluminescence was correlated with bacterial burden and histopathology in reporter strain-infected mice, suggesting that bioluminescent bacteria are useful for monitoring A. baumannii infections in animal models.


Asunto(s)
Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/fisiología , Mediciones Luminiscentes/métodos , Neumonía/microbiología , Acinetobacter baumannii/química , Acinetobacter baumannii/genética , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos BALB C
16.
Mater Sci Eng C Mater Biol Appl ; 92: 52-60, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30184778

RESUMEN

Recently, the interest in antimicrobial hydrogels with impregnated antibacterial agents has significantly increased because of their ability to combat infection in biomedical applications, including wound management, tissue engineering, and biomaterial surface coating. Among these antibacterial reagents, silver nanoparticles (AgNP) show good antibacterial activity against both gram-negative and gram-positive bacteria, including highly multi-resistant strains. However, the entrapment of AgNP within a hydrogel matrix is often associated with toxicity issues because of the use of chemical reductants (e.g., commonly sodium borohydride), burst leaching, or unwanted agglomeration of AgNP in the absence of surfactants or stabilizers. In this study, we present catechol-rich gelatin hydrogels with in situ hybridization of AgNP for enhanced antimicrobial activities. AgNP were formed through a redox reaction between silver ions and the catechol moieties of a gelatin derivative polymer, without the addition of any chemical reductants. The AgNP with an average size of 20 nm were entrapped within hydrogel matrices and showed sustained release from the hydrogel matrix (8.7% for 14 days). The resulting hydrogels could kill both gram-negative and gram-positive bacteria, depending on the amount of AgNP released from the hydrogels and did not have a significant influence on mammalian cell viability. We believe that our catechol-rich hydrogels in situ hybridizations with AgNP have great potential for biomedical applications, such as wound management and surface coating, because of their excellent antibacterial activities and biocompatibility.


Asunto(s)
Antibacterianos/química , Hidrogeles/química , Nanopartículas del Metal/química , Plata/química , Antibacterianos/farmacología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Catecoles/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Pruebas Antimicrobianas de Difusión por Disco , Módulo de Elasticidad , Gelatina/química , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Nanopartículas del Metal/toxicidad , Tamaño de la Partícula , Plata/metabolismo
17.
PLoS One ; 13(7): e0200111, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29975738

RESUMEN

We investigated therapeutic potential of human tonsil-derived mesenchymal stem cells (TMSC) subcutaneously delivered to ovariectomized (OVX) mice for developing more safe and effective therapy for osteoporosis. TMSC were isolated from tonsil tissues of children undergoing tonsillectomy, and TMSC-embedded in situ crosslinkable gelatin-hydroxyphenyl propionic acid hydrogel (TMSC-GHH) or TMSC alone were delivered subcutaneously to the dorsa of OVX mice. After 3 months, three-dimensionally reconstructed micro-computed tomographic images revealed better recovery of the femoral heads in OVX mice treated with TMSC-GHH. Serum osteocalcin and alkaline phosphatase were also recovered, indicating bone formation only in TMSC-GHH-treated mice, and absence in hypercalcemia or other severe macroscopic deformities showed biocompatibility of TMSC-GHH. Additionally, visceral fat reduction effects by TMSC-GHH further supported their therapeutic potential. TMSC provided therapeutic benefits toward osteoporosis only when embedded in GHH, and showed potential as a supplement or alternative to current therapies.


Asunto(s)
Células Madre Adultas/fisiología , Osteoporosis Posmenopáusica/terapia , Fosfatasa Alcalina/sangre , Animales , Regeneración Ósea/fisiología , Niño , Femenino , Gelatina/uso terapéutico , Humanos , Hidrogeles/uso terapéutico , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Endogámicos ICR , Modelos Animales , Osteocalcina/sangre , Osteoporosis/terapia , Ovariectomía , Tonsila Palatina/metabolismo
18.
ACS Appl Mater Interfaces ; 10(21): 18372-18379, 2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-29722526

RESUMEN

Reactive oxygen species (ROS) have been implicated as a critical modulator for various therapeutic applications such as treatment of vascular disorders, wound healing, and cancer treatment. Specifically, growing evidence has recently demonstrated that transient or low levels of hydrogen peroxide (H2O2) facilitates tissue regeneration and wound repair through acute oxidative stress that can evaluate intracellular ROS levels in cells or tissues. Herein, we report a gelatin-based H2O2-releasing hydrogel formed by dual enzyme-mediated reaction using horseradish peroxidase and glucose oxidase (GO x). The release behavior of H2O2 from the hydrogel matrices can be precisely controlled by varying the GO x concentrations. We demonstrate that H2O2-releasing hydrogels with the optimal condition increase transient upregulation of intracellular ROS levels in the endothelial cells (ECs), enhance proliferative activities of ECs in vitro, and facilitate neovascularization in ovo. We suggest that our H2O2-releasing hydrogels hold great potential as an injectable and dynamic matrix for the treatment of vascular disorders as well as in tissue regenerative medicine.


Asunto(s)
Peróxido de Hidrógeno/química , Células Endoteliales , Gelatina , Peroxidasa de Rábano Silvestre , Hidrogeles
19.
Biomater Res ; 22: 3, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29449959

RESUMEN

BACKGROUND: Zwitterionic molecules have been widely studied as coating materials for preparing anti-fouling surfaces because they possess strong hydration properties that can resist non-specific protein adsorption. Numerous studies on surface modification using zwitterionic molecules have been investigated, such as electrochemically mediated and photoinitiated radical polymerization. However, these methods have some limitations, including multi-step process, difficulties in producing thick and dense layers as well as the requirement of extra facilities. In this study, we report a novel zwitterionic hydrogel-coating method via Fenton reaction for the preparation of anti-fouling surfaces. METHODS: Sulfobetaine methacrylate (SBMA) hydrogel was coated on polyurethane (PU) by polymerization of SBMA molecules via the Fenton reaction. The coated surfaces were characterized by the measurements of water contact angle, SEM and XPS. The anti-fouling properties of the modified surfaces were evaluated by reductions of fibrinogen absorption and cell (human dermal fibroblasts, hDFBs) adhesion. RESULTS: SBMA hydrogel layers were coated on the PU substrates and these layers have a high affinity for water. The hydrogel coatings were highly stable for 7 days, without a significant change in surface wettability. Importantly, the hydrogel-coated PU substrates decrease 80% of surface-adsorbed fibrinogen and surface-attached hDFBs (compared with uncoated PU substrates), indicating the excellent anti-fouling activities of modified surfaces. CONCLUSIONS: The hydrogel-coated PU surfaces prepared by Fenton reaction with anti-fouling properties could have potential uses for implantable biomedical devices.

20.
Int J Mol Sci ; 19(2)2018 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-29370101

RESUMEN

Human mesenchymal stem cells (hMSCs) have been widely studied for therapeutic development in tissue engineering and regenerative medicine. They can be harvested from human donors via tissue biopsies, such as bone marrow aspiration, and cultured to reach clinically relevant cell numbers. However, an unmet issue lies in the fact that the hMSC donors for regenerative therapies are more likely to be of advanced age. Their stem cells are not as potent compared to those of young donors, and continue to lose healthy, stemness-related activities when the hMSCs are serially passaged in tissue culture plates. Here, we have developed a cheap, scalable, and effective copolymer film to culture hMSCs obtained from aged human donors over several passages without loss of reactive oxygen species (ROS) handling or differentiation capacity. Assays of cell morphology, reactive oxygen species load, and differentiation potential demonstrate the effectiveness of copolymer culture on reduction in senescence-related activities of aging donor-derived hMSCs that could hinder the therapeutic potential of autologous stem cell therapies.


Asunto(s)
Envejecimiento/metabolismo , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Cultivo Primario de Células/métodos , Especies Reactivas de Oxígeno/metabolismo , Materiales Biocompatibles/química , Proliferación Celular , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/citología , Poliésteres , Polietilenglicoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...