Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neurol ; 13: 723923, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35528741

RESUMEN

Objective: The purpose of this pilot study was to determine if military service members with histories of hundreds to thousands of low-level blast exposures (i. e., experienced breachers) had different levels of serum and neuronal-derived extracellular vesicle (EV) concentrations of interleukin (IL)-6, IL-10, and tumor necrosis factor alpha (TNFα), compared to matched controls, and if these biomarkers related to neurobehavioral symptoms. Methods: Participants were experienced breachers (n = 20) and matched controls without blast exposures (n = 14). Neuronal-derived EVs were isolated from serum and identified with mouse anti-human CD171. Serum and neuronal-derived EVs were analyzed for IL-6, IL-10, and TNFα using an ultra-sensitive assay. Results: Serum TNFα concentrations were decreased in breachers when compared to control concentrations (p < 0.01). There were no differences in serum concentrations of IL-6, IL-10, or the IL-6/IL-10 ratio between breachers and controls (p's > 0.01). In neuronal-derived EVs, TNFα and IL-6 levels were increased in breachers compared to controls (p's < 0.01), and IL-10 levels were decreased in the breacher group compared to controls (p < 0.01). In breachers the IL-6/IL-10 ratio in neuronal-derived EVs was higher compared to controls, which correlated with higher total Rivermead Post-concussion Questionnaire (RPQ) scores (p's < 0.05). Conclusions: These findings suggest that exposure of personnel to high numbers of low-level blast over a career may result in enduring central inflammation that is associated with chronic neurological symptoms. The data also suggest that peripheral markers of inflammation are not necessarily adequate surrogates for central neuroinflammation.

2.
Brain Inj ; 36(5): 652-661, 2022 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-35322723

RESUMEN

BACKGROUND: Blast traumatic brain injury (TBI) and subconcussive blast exposure have been associated, pathologically, with chronic traumatic encephalopathy (CTE) and, clinically, with cognitive and affective symptoms, but the underlying pathomechanisms of these associations are not well understood. We hypothesized that exosomal microRNA (miRNA) expression, and their relation to neurobehavioral outcomes among Veterans with blunt or blast mild TBI (mTBI) may provide insight into possible mechanisms for these associations and therapeutic targets. METHODS: This is a subanalysis of a larger Chronic Effects of Neurotrauma Consortium Biomarker Discovery Project. Participants (n = 152) were divided into three groups: Controls (n = 35); Blunt mTBI only (n = 54); and Blast/blast+blunt mTBI (n = 63). Postconcussive and post-traumatic stress symptoms were evaluated using the NSI and PCL-5, respectively. Exosomal levels of 798 miRNA expression were measured. RESULTS: In the blast mTBI group, 23 differentially regulated miRNAs were observed compared to the blunt mTBI group and 23 compared to controls. From the pathway analysis, significantly dysregulated miRNAs in the blast exposure group correlated with inflammatory, neurodegenerative, and androgen receptor pathways. DISCUSSION: Our findings suggest that chronic neurobehavioral symptoms after blast TBI may pathomechanistically relate to dysregulated cellular pathways involved with neurodegeneration, inflammation, and central hormonal regulation.


Asunto(s)
Traumatismos por Explosión , Conmoción Encefálica , Lesiones Traumáticas del Encéfalo , MicroARNs , Trastornos por Estrés Postraumático , Veteranos , Traumatismos por Explosión/complicaciones , Traumatismos por Explosión/genética , Traumatismos por Explosión/psicología , Conmoción Encefálica/complicaciones , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/genética , Explosiones , Humanos , MicroARNs/genética , Trastornos por Estrés Postraumático/complicaciones , Veteranos/psicología
3.
Sleep Med ; 80: 1-8, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33530007

RESUMEN

BACKGROUND: Insomnia is a highly prevalent condition that is associated with negative health outcomes, yet little is known about the underlying molecular mechanisms. METHOD: RNA sequencing was conducted using blood samples from 15 individuals with primary insomnia and 15 age- and gender-matched good sleeper controls. The RNA library was sequenced with 150 base pair paired-ends on the Illumina NovaSeq-6000 platform. Alignment was performed using human reference genome hg38. Differential gene expression analysis was performed using DESeq2 following alignment, using log fold change ±0.50, and had a false discovery rate p-value <0.05. Pathway analysis was performed using Ingenuity Pathway Analysis. RESULTS: We found 288 differentially expressed genes in insomnia patients when compared to controls. Upregulated genes included LINC02224 (Long Intergenic Non-Protein Coding RNA 2224), DUX4L9 (Double Homeobox 4 Like 9), and TUSC3 (Tumor Suppressor Candidate 3) and down regulated genes included CTXN2 (Cortexin 2), CSMD1 (CUB And Sushi Multiple Domains 1), and SLC12A1 (Solute Carrier Family 12 Member 1). Ingenuity® Pathway Analysis (IPA) revealed 3 associated networks (score>40) with genes and hubs related to inflammation (nuclear factor-kB), oxidative stress (Mitochondrial complex 1) and ubiquitination. CONCLUSION: Differentially expressed genes in this analysis are functionally associated with inflammation and immune response, mitochondrial and metabolic processes. Further research into the transcriptomic changes in insomnia is needed to understand related pathways to the disorder and provide new avenues for diagnostics and therapeutics.


Asunto(s)
Trastornos del Inicio y del Mantenimiento del Sueño , Perfilación de la Expresión Génica , Humanos , Proyectos Piloto , Análisis de Secuencia de ARN , Trastornos del Inicio y del Mantenimiento del Sueño/genética , Transcriptoma/genética
4.
Front Pharmacol ; 12: 762077, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35153739

RESUMEN

Background: Elevations of inflammatory cytokine levels occur immediately after mild traumatic brain injury (mTBI) and can persist for years. These elevations have been associated with neuropsychological outcomes, including depression and PTSD symptoms. Sleep disorders, another common sequelae of mTBI, are independently associated with inflammation in otherwise healthy individuals. However, whether sleep and inflammation are linked in chronic mTBI has not been reported. Methods: A retrospective cross-sectional cohort of warfighters was used to investigate the hypothesis that inflammation may be linked to sleep quality in chronic mTBI. Clinical history, peripheral blood samples, and sleep quality scores were collected from 182 warfighters (n = 138 mTBI; n = 44 controls) during enrollment in the Chronic Effects of Neurotrauma Consortium study. Biomarkers of inflammation (IL-6, IL-10, TNFα cytokines) from plasma and plasma-derived extracellular vesicles (EVs) were quantified using single molecule array. Relationships between sleep quality and cytokine levels were assessed, controlling for age, sex, and BMI. Using clinical cutoff scores for sleep quality, mTBI patients were then divided into "good" and "poor" sleepers and cytokine levels compared between groups. Results: In mTBI participants, sleep quality was significantly associated with EV levels of IL-10 [ß (SE) = 0.11 (0.04), p = 0.01] and TNFα [ß (SE) = 0.07 (0.03), p < 0.01]. When divided according to "good" versus "poor" sleepers, those reporting poor sleep had significantly elevated EV IL-10 compared to those reporting good sleep [ß (SE) = 0.12 (0.04), p < 0.01]. Plasma-derived associations were not significant. No associations were found between sleep quality and cytokine levels in controls. Conclusion: These results suggest a significant relationship between sleep quality and chronic inflammation in mTBI patients. Clinically, mTBI patients with a high likelihood of sleep disorders demonstrate elevated levels of inflammatory cytokines. Signal from EVs, though smaller in magnitude, may have stronger clinical associations than from plasma. Sleep-focused interventions may also serve to regulate chronic inflammatory processes in these patients. Larger prospective studies are needed to investigate the mechanisms and therapeutic implications of the likely bi-directional relationship between sleep and inflammation following mTBI.

5.
Brain Inj ; 34(9): 1213-1221, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32755419

RESUMEN

OBJECTIVES: To evaluate how blast exposure impacts peripheral biomarkers.in military personnel enrolled in 10-day blast training. METHODS: On day 7, 21 military personnel experienced peak overpressure <2 pounds per square inch (psi); while 29 military personnel experienced peak overpressure ≥5 psi. Blood samples were collected each day to measure changes in amyloid beta (Aß), neurofilament light chain (NFL), and tau concentrations. RESULTS: Within 24 hours following exposure ≥5 psi, the ≥5 psi group had lower Aß42 (p = .004) and NFL (p < .001) compared to the <2 psi group and lower Aß42 (9.35%) and NFL (22.01%) compared to baseline. Twenty-four hours after ≥5 psi exposure, the ≥5 psi group had lower tau (p < .001) and NFL (p < .001) compared to the <2 psi group and baseline. Seventy-two hours after exposure ≥5 psi, tau increased in the ≥5 psi group compared to the <2 psi group (p = .02) and baseline. The tau:Aß42 ratio 24 hours after blast (p = .012), and the Aß40:Aß42 ratio 48 hours after blast (p = .04) differed in the ≥5 psi group compared to the <2 psi group. CONCLUSIONS: These findings provide an initial report of acute alterations in biomarker concentrations following blast exposure.


Asunto(s)
Péptidos beta-Amiloides , Personal Militar , Biomarcadores , Humanos , Filamentos Intermedios , Proteínas de Neurofilamentos , Proteínas tau
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...