Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
PLoS Genet ; 7(12): e1002408, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22194697

RESUMEN

The ribosome is critical for all aspects of cell growth due to its essential role in protein synthesis. Paradoxically, many Ribosomal proteins (Rps) act as tumour suppressors in Drosophila and vertebrates. To examine how reductions in Rps could lead to tissue overgrowth, we took advantage of the observation that an RpS6 mutant dominantly suppresses the small rough eye phenotype in a cyclin E hypomorphic mutant (cycE(JP)). We demonstrated that the suppression of cycE(JP) by the RpS6 mutant is not a consequence of restoring CycE protein levels or activity in the eye imaginal tissue. Rather, the use of UAS-RpS6 RNAi transgenics revealed that the suppression of cycE(JP) is exerted via a mechanism extrinsic to the eye, whereby reduced Rp levels in the prothoracic gland decreases the activity of ecdysone, the steroid hormone, delaying developmental timing and hence allowing time for tissue and organ overgrowth. These data provide for the first time a rationale to explain the counter-intuitive organ overgrowth phenotypes observed for certain members of the Minute class of Drosophila Rp mutants. They also demonstrate how Rp mutants can affect growth and development cell non-autonomously.


Asunto(s)
Ciclina E/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/genética , Ecdisona/metabolismo , Ojo/crecimiento & desarrollo , Proteína S6 Ribosómica/genética , Animales , Animales Modificados Genéticamente , Proliferación Celular , Ciclina E/genética , Drosophila melanogaster/metabolismo , Glándulas Endocrinas/metabolismo , Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Organogénesis/genética , Fenotipo , Interferencia de ARN , Proteína S6 Ribosómica/metabolismo
3.
Cell ; 146(3): 435-47, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21816278

RESUMEN

Developing animals survive periods of starvation by protecting the growth of critical organs at the expense of other tissues. Here, we use Drosophila to explore the as yet unknown mechanisms regulating this privileged tissue growth. As in mammals, we observe in Drosophila that the CNS is more highly spared than other tissues during nutrient restriction (NR). We demonstrate that anaplastic lymphoma kinase (Alk) efficiently protects neural progenitor (neuroblast) growth against reductions in amino acids and insulin-like peptides during NR via two mechanisms. First, Alk suppresses the growth requirement for amino acid sensing via Slimfast/Rheb/TOR complex 1. And second, Alk, rather than insulin-like receptor, primarily activates PI3-kinase. Alk maintains PI3-kinase signaling during NR as its ligand, Jelly belly (Jeb), is constitutively expressed from a glial cell niche surrounding neuroblasts. Together, these findings identify a brain-sparing mechanism that shares some regulatory features with the starvation-resistant growth programs of mammalian tumors.


Asunto(s)
Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Quinasa de Linfoma Anaplásico , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/metabolismo , Privación de Alimentos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Larva/crecimiento & desarrollo , Larva/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Poliploidía
4.
Mol Cell Biol ; 30(2): 481-95, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19917724

RESUMEN

The target of rapamycin (TOR) complex 1 (TORC1) signaling pathway is a critical regulator of translation and cell growth. To identify novel components of this pathway, we performed a kinome-wide RNA interference (RNAi) screen in Drosophila melanogaster S2 cells. RNAi targeting components of the p38 stress-activated kinase cascade prevented the cell size increase elicited by depletion of the TOR negative regulator TSC2. In mammalian and Drosophila tissue culture, as well as in Drosophila ovaries ex vivo, p38-activating stresses, such as H(2)O(2) and anisomycin, were able to activate TORC1. This stress-induced TORC1 activation could be blocked by RNAi against mitogen-activated protein kinase kinase 3 and 6 (MKK3/6) or by the overexpression of dominant negative Rags. Interestingly, p38 was also required for the activation of TORC1 in response to amino acids and growth factors. Genetic ablation either of p38b or licorne, its upstream kinase, resulted in small flies consisting of small cells. Mutants with mutations in licorne or p38b are nutrition sensitive; low-nutrient food accentuates the small-organism phenotypes, as well as the partial lethality of the p38b null allele. These data suggest that p38 is an important positive regulator of TORC1 in both mammalian and Drosophila systems in response to certain stresses and growth factors.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Factores de Transcripción/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Alelos , Animales , Antibióticos Antineoplásicos/farmacología , Proteínas de Ciclo Celular/genética , Línea Celular , Tamaño de la Célula/efectos de los fármacos , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Antagonistas de Estrógenos/farmacología , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Humanos , Peróxido de Hidrógeno/farmacología , Larva/genética , Larva/metabolismo , Masculino , Mutación , Ovario/citología , Ovario/enzimología , Oxidantes/farmacología , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Interferencia de ARN/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sirolimus/farmacología , Tamoxifeno/farmacología , Factores de Transcripción/efectos de los fármacos , Factores de Transcripción/genética , Proteínas Quinasas p38 Activadas por Mitógenos/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/genética
5.
Genome Biol ; 8(10): R216, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17927810

RESUMEN

BACKGROUND: Mutations in genes encoding ribosomal proteins (RPs) have been shown to cause an array of cellular and developmental defects in a variety of organisms. In Drosophila melanogaster, disruption of RP genes can result in the 'Minute' syndrome of dominant, haploinsufficient phenotypes, which include prolonged development, short and thin bristles, and poor fertility and viability. While more than 50 Minute loci have been defined genetically, only 15 have so far been characterized molecularly and shown to correspond to RP genes. RESULTS: We combined bioinformatic and genetic approaches to conduct a systematic analysis of the relationship between RP genes and Minute loci. First, we identified 88 genes encoding 79 different cytoplasmic RPs (CRPs) and 75 genes encoding distinct mitochondrial RPs (MRPs). Interestingly, nine CRP genes are present as duplicates and, while all appear to be functional, one member of each gene pair has relatively limited expression. Next, we defined 65 discrete Minute loci by genetic criteria. Of these, 64 correspond to, or very likely correspond to, CRP genes; the single non-CRP-encoding Minute gene encodes a translation initiation factor subunit. Significantly, MRP genes and more than 20 CRP genes do not correspond to Minute loci. CONCLUSION: This work answers a longstanding question about the molecular nature of Minute loci and suggests that Minute phenotypes arise from suboptimal protein synthesis resulting from reduced levels of cytoribosomes. Furthermore, by identifying the majority of haplolethal and haplosterile loci at the molecular level, our data will directly benefit efforts to attain complete deletion coverage of the D. melanogaster genome.


Asunto(s)
Drosophila melanogaster/genética , Evolución Molecular , Mutación/genética , Fenotipo , Proteínas Ribosómicas/genética , Animales , Biología Computacional , Citoplasma/metabolismo , Genes Duplicados/genética
6.
Aging Cell ; 6(4): 429-38, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17465980

RESUMEN

The insulin/insulin growth factor (IGF)-like signaling (IIS) pathway has a conserved role in regulating lifespan in Caenorhabditis elegans, Drosophila and mice. Extension of lifespan by reduced IIS has been shown in C. elegans to require the key IIS target, forkhead box class O (FOXO) transcription factor, DAF-16. dFOXO, the Drosophila DAF-16 orthologue, is also an IIS target, and its overexpression in adult fat body increases lifespan. In C. elegans, IIS acts exclusively during adulthood to determine adult survival. We show here, using an inducible overexpression system, that in Drosophila continuous dFOXO overexpression in adult fat body reduces mortality rate throughout adulthood. We switched the IIS status of the flies at different adult ages and examined the effects of these switches on dFOXO expression and mortality rates. dFOXO protein levels were switched up or down by the inducible expression system at all ages examined. If IIS status is reversed early in adulthood, similar to the effects of another intervention that reduces adult mortality in Drosophila, dietary restriction (DR), there is a complete switch of subsequent mortality rate to that of flies chronically exposed to the new IIS regime. At this age, IIS thus acts acutely to determine risk of death. Mortality rates continued to respond to a switch in IIS status up to 4 weeks of adult age, but not thereafter. However, unlike DR, as IIS status was altered at progressively later ages, mortality rates showed incomplete switching and responded with progressively smaller changes. These findings indicate that alteration of expression levels of dFOXO may have declining effects on IIS status with age, that there could be some process that prevents or lessens the physiological response to a switch in IIS status or that, unlike DR, this pathway regulates aging-related damage. The decreased mortality and increased lifespan of dFOXO overexpressing flies was uncoupled from any effect on female fecundity and from expression levels of Drosophila insulin-like peptides in the brain.


Asunto(s)
Envejecimiento/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Factores de Transcripción Forkhead/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Animales , Drosophila melanogaster/metabolismo , Femenino , Regulación de la Expresión Génica , Longevidad/fisiología , Mifepristona/efectos adversos , Transducción de Señal
7.
J Biol Chem ; 282(20): 14752-60, 2007 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-17392269

RESUMEN

The Drosophila gene, pixie, is an essential gene required for normal growth and translation. Pixie is the fly ortholog of human RLI, which was first identified as an RNase L inhibitor, and yeast Rli1p, which has recently been shown to play a role in translation initiation and ribosome biogenesis. These proteins are all soluble ATP-binding cassette proteins with two N-terminal iron-sulfur clusters. Here we demonstrate that Pixie can be isolated from cells in complex with eukaryotic translation initiation factor 3 and ribosomal proteins of the small subunit. In addition, our analysis of polysome profiles reveals that double-stranded RNA interference-mediated depletion of Pixie results in an increase in empty 80 S ribosomes and a corresponding decrease in polysomes. Thus Pixie is required for normal levels of translation initiation. We also find that Pixie associates with the 40 S subunit on sucrose density gradients in an ATP-dependent manner. Our observations are consistent with Pixie playing a catalytic role in the assembly of complexes required for translation initiation. Thus, the function of this soluble ATP-binding cassette domain protein family in translation initiation has been conserved from yeast through to higher eukaryotes.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas de Drosophila/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Iniciación de la Cadena Peptídica Traduccional/fisiología , Polirribosomas/metabolismo , Animales , Línea Celular , Drosophila melanogaster , Humanos , Unión Proteica/fisiología
8.
EMBO J ; 26(2): 371-9, 2007 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-17183368

RESUMEN

In Drosophila and mammals, insulin signalling can increase growth, progression through G1/S, cell size and tissue size. Here, we analyse the way insulin affects cell size and cell-cycle progression in two haemocyte-derived Drosophila cell lines. Surprisingly, we find that although insulin increases cell size, it slows the rate at which these cells increase in number. By using BrdU pulse-chase to label S-phase cells and follow their progression through the cell cycle, we show that insulin delays progression through G2/M, thereby slowing cell division. The ability of insulin to slow progression through G2/M is independent of its ability to stimulate progression through G1/S, so is not a consequence of feedback by the cell-cycle machinery to maintain cell-cycle length. Insulin's effects on progression through G2/M are mediated by dTOR/dRaptor signalling. Partially inhibiting dTOR/dRaptor signalling by dsRNAi or mild rapamycin treatment can increase cell number in cultured haemocytes and the Drosophila wing, respectively. Thus, insulin signalling can influence cell number depending on a balance between its ability to accelerate progression through G1/S and delay progression through G2/M.


Asunto(s)
División Celular/efectos de los fármacos , Proteínas de Drosophila/metabolismo , Fase G2/efectos de los fármacos , Insulina/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Drosophila , Masculino , Complejos Multiproteicos/metabolismo , Proteínas Quinasas , Interferencia de ARN , Fase S/efectos de los fármacos , Transducción de Señal , Serina-Treonina Quinasas TOR , Alas de Animales/citología , Alas de Animales/efectos de los fármacos
9.
Nat Cell Biol ; 8(11): 1298-302, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17041587

RESUMEN

Class I phosphoinositide 3-kinases (PI(3)Ks) are activated through associated adaptor molecules in response to G protein-coupled and tyrosine kinase receptor signalling. They contain Ras-binding domains (RBDs) and can also be activated through direct association with active GTP-bound Ras. The ability of Ras to activate PI(3)K has been established in vitro and by overexpression analysis, but its relevance for normal PI(3)K function in vivo is unknown. The Drosophila class I PI(3)K, Dp110, is activated by nutrient-responsive insulin signalling and modulates growth, oogenesis and metabolism. To investigate the importance of Ras-mediated PI(3)K activation for normal PI(3)K function, we replaced Dp110 with Dp110(RBD), which is unable to bind to Ras but otherwise biochemically normal. We found that Ras-mediated Dp110 regulation is dispensable for viability. However, egg production, which requires large amounts of growth, is dramatically lowered in Dp110(RBD) flies. Furthermore, insulin cannot maximally activate PI(3)K signalling in Dp110(RBD) imaginal discs and Dp110(RBD) flies are small. Thus, Dp110 integrates inputs from its phosphotyrosine-binding adaptor and Ras to achieve maximal PI(3)K signalling in specific biological situations.


Asunto(s)
Drosophila melanogaster/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Proteínas ras/metabolismo , Animales , Sitios de Unión/genética , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Supervivencia Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Activación Enzimática/efectos de los fármacos , Femenino , Immunoblotting , Insulina/farmacología , Masculino , Microscopía Fluorescente , Mutación/genética , Fosfatidilinositol 3-Quinasas/genética , Fosforilación/efectos de los fármacos , Unión Proteica , Alas de Animales/efectos de los fármacos , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo , Proteínas ras/genética
10.
Proc Natl Acad Sci U S A ; 103(43): 15911-5, 2006 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-17043223

RESUMEN

This study links natural variation in a Drosophila melanogaster overwintering strategy, diapause, to the insulin-regulated phosphatidylinositol 3-kinase (PI3-kinase) gene, Dp110. Variation in diapause, a reproductive arrest, was associated with Dp110 by using Dp110 deletions and genomic rescue fragments in transgenic flies. Deletions of Dp110 increased the proportion of individuals in diapause, whereas expression of Dp110 in the nervous system, but not including the visual system, decreased it. The roles of phosphatidylinositol 3-kinase for both diapause in D. melanogaster and dauer formation in Caenorhabditis elegans suggest a conserved role for this kinase in both reproductive and developmental arrests in response to environmental stresses.


Asunto(s)
Conducta Animal , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Variación Genética/genética , Insulina/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Dosificación de Gen/genética , Datos de Secuencia Molecular , Neuronas/metabolismo , Fenotipo , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN
11.
Genome Biol ; 7(5): 219, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16737557

RESUMEN

Cell-based genome-wide RNA interference screens are being used to address an increasingly broad spectrum of biological questions. In one recent screen, Drosophila cell cultures treated with double-stranded RNA were analyzed by flow cytometry, providing a wealth of new information and identifying 488 regulators of the cell cycle, cell size, and cell death.


Asunto(s)
Ciclo Celular/genética , Tamaño de la Célula , Interferencia de ARN , Animales , Drosophila/citología , Drosophila/genética , Genes de Insecto , Genómica
12.
Cell Metab ; 2(5): 277-8, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16271526

RESUMEN

In the fruit fly Drosophila melanogaster, the insulin and ecdysone signaling pathways have long been known to regulate growth and developmental timing, respectively. Recent findings reveal that crosstalk between these pathways allows coordination of growth and developmental timing and thus determines final body size.


Asunto(s)
Drosophila melanogaster/fisiología , Ecdisona/metabolismo , Ecdisterona/metabolismo , Insulina/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Tamaño Corporal , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Ecdisterona/biosíntesis , Cuerpo Adiposo/crecimiento & desarrollo , Antagonistas de Insulina/metabolismo , Larva/crecimiento & desarrollo , Metamorfosis Biológica , Transducción de Señal
13.
Development ; 132(24): 5411-24, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16291791

RESUMEN

It is largely unknown how growth slows and then stops in vivo. Similar to most organs, Drosophila imaginal discs undergo a fast, near-exponential growth phase followed by a slow growth phase before final target size is reached. We have used a genetic approach to study the role of an ABC-E protein, Pixie, in wing disc growth. pixie mutants, like mutants in ribosomal proteins genes (known as Minutes), show severe developmental delay with relatively mild alterations in final body size. Intriguingly, pixie mutant wing imaginal discs show complex regional and temporal defects in growth and cell survival that are compensated to result in near-normal final size. In S2 cells, Pixie, like its yeast homolog RLI1, is required for translation. However, a comparison of the growth of eukaryotic translation initiation factor eIF4A and pixie mutant clones in wing discs suggests that only a subset of translation regulators, including pixie, mediate regional differences in growth and cell survival in wing discs. Interestingly, some of the regional effects on pixie mutant clone growth are enhanced in a Minute background. Our results suggest that the role of Pixie is not merely to allow growth, as might be expected for a translation regulator. Instead, Pixie also behaves as a target of putative constraining signals that slow disc growth during late larval life. We propose a model in which a balance of growth inhibitors and promoters determines tissue growth rates and cell survival. An alteration in this balance slows growth before final disc size is reached.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Proteínas de Drosophila/fisiología , Drosophila/fisiología , Transportadoras de Casetes de Unión a ATP/genética , Animales , Supervivencia Celular/fisiología , Células Cultivadas , Drosophila/genética , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/genética , Factor 4A Eucariótico de Iniciación/genética , Factor 4A Eucariótico de Iniciación/fisiología , Larva/crecimiento & desarrollo , Larva/fisiología , Mutación , Biosíntesis de Proteínas , Transducción de Señal , Alas de Animales/crecimiento & desarrollo , Alas de Animales/fisiología
14.
Curr Opin Cell Biol ; 17(6): 604-9, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16226450

RESUMEN

A key difference between yeast and metazoans is the need of the latter to regulate cell proliferation and growth to create organs (and organisms) of reproducible size and shape. Great progress has been made in understanding how growth, cell size and the cell cycle are controlled in metazoans. Recent work has shown that disruption of conserved components of the insulin and Tor kinase pathways can alter organ size, indicating that the normal functioning of these pathways is essential for organ size control. However, disruption of genes that regulate patterning and of genes that control cell adhesion and cell polarity has a much more dramatic effect on final organ size than does manipulation of the cell cycle or of basal growth control mechanisms. These data point to an 'organ-size checkpoint' that regulates cell division, cell growth and apoptosis. Recent data suggests that cell competition may play an important role in implementing the organ-size checkpoint.


Asunto(s)
Estructuras Animales/crecimiento & desarrollo , Aumento de la Célula , Proliferación Celular , Tamaño de los Órganos/fisiología , Estructuras Animales/citología , Animales , Adhesión Celular/fisiología , Muerte Celular/fisiología , Polaridad Celular/fisiología , Humanos , Tamaño de los Órganos/genética
15.
Genetics ; 171(2): 597-614, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15998720

RESUMEN

Studies in the fly, Drosophila melanogaster, have revealed that several signaling pathways are important for the regulation of growth. Among these, the insulin receptor/phosphoinositide 3-kinase (PI3K) pathway is remarkable in that it affects growth and final size without disturbing pattern formation. We have used a small-wing phenotype, generated by misexpression of kinase-dead PI3K, to screen for novel mutations that specifically disrupt organ growth in vivo. We identified several complementation groups that dominantly enhance this small-wing phenotype. Meiotic recombination in conjunction with visible markers and single-nucleotide polymorphisms (SNPs) was used to map five enhancers to single genes. Two of these, nucampholin and prp8, encode pre-mRNA splicing factors. The three other enhancers encode factors required for mRNA translation: pixie encodes the Drosophila ortholog of yeast RLI1, and RpL5 and RpL38 encode proteins of the large ribosomal subunit. Interestingly, mutations in several other ribosomal protein-encoding genes also enhance the small-wing phenotype used in the original screen. Our work has therefore identified mutations in five previously uncharacterized Drosophila genes and provides in vivo evidence that normal organ growth requires optimal regulation of both pre-mRNA splicing and mRNA translation.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Biosíntesis de Proteínas/genética , Empalme del ARN/genética , Transducción de Señal/genética , Alas de Animales/crecimiento & desarrollo , Secuencia de Aminoácidos , Animales , Mapeo Cromosómico , Biología Computacional , Cruzamientos Genéticos , Drosophila melanogaster/crecimiento & desarrollo , Componentes del Gen , Prueba de Complementación Genética , Datos de Secuencia Molecular , Mutagénesis , Mutación/genética , Polimorfismo de Nucleótido Simple/genética , Polimorfismo Conformacional Retorcido-Simple
16.
Proc Natl Acad Sci U S A ; 102(8): 3105-10, 2005 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-15708981

RESUMEN

The insulin/insulin-like growth factor-like signaling pathway, present in all multicellular organisms, regulates diverse functions including growth, development, fecundity, metabolic homeostasis, and lifespan. In flies, ligands of the insulin/insulin-like growth factor-like signaling pathway, the Drosophila insulin-like peptides, regulate growth and hemolymph carbohydrate homeostasis during development and are expressed in a stage- and tissue-specific manner. Here, we show that ablation of Drosophila insulin-like peptide-producing median neurosecretory cells in the brain leads to increased fasting glucose levels in the hemolymph of adults similar to that found in diabetic mammals. They also exhibit increased storage of lipid and carbohydrate, reduced fecundity, and reduced tolerance of heat and cold. However, the ablated flies show an extension of median and maximal lifespan and increased resistance to oxidative stress and starvation.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila/fisiología , Insulina/fisiología , Longevidad , Transducción de Señal/fisiología , Somatomedinas/fisiología , Animales , Metabolismo de los Hidratos de Carbono , Proteínas de Drosophila/genética , Fertilidad , Metabolismo de los Lípidos , Estrés Oxidativo , Inanición
17.
Genetics ; 169(2): 683-95, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15520262

RESUMEN

The Minute mutations of Drosophila melanogaster are thought to disrupt genes that encode ribosomal proteins (RPs) and thus impair ribosome function and protein synthesis. However, relatively few Minutes have been tied to distinct RP genes and more Minute loci are likely to be discovered. We have identified point mutations in RpL38 and RpL5 in a screen for factors limiting for growth of the D. melanogaster wing. Here, we present the first genetic characterization of these loci. RpL38 is located in the centric heterochromatin of chromosome arm 2R and is identical to a previously identified Minute, M(2)41A, and also l(2)41Af. RpL5 is located in the 2L centric heterochromatin and defines a novel Minute gene. Both genes are haplo-insufficient, as heterozygous mutations cause the classic Minute phenotypes of small bristles and delayed development. Surprisingly, we find that RpL38(-)/+ and RpL5(-)/+ adult flies have abnormally large wings as a result of increased cell size, emphasizing the importance of translational regulation in the control of growth. Taken together, our data provide new molecular and genetic information on two previously uncharacterized Minute/RP genes, the heterochromatic regions in which they reside, and the role of their protein products in the control of organ growth.


Asunto(s)
Cromosomas , Drosophila melanogaster/genética , Genes de Insecto , Heterocromatina , Alelos , Secuencia de Aminoácidos , Animales , Tipificación del Cuerpo/genética , Tamaño de la Célula , Mapeo Cromosómico , Proteínas de Drosophila/química , Drosophila melanogaster/citología , Drosophila melanogaster/crecimiento & desarrollo , Dosificación de Gen , Heterocigoto , Datos de Secuencia Molecular , Mutación Puntual , Procesamiento Proteico-Postraduccional , Homología de Secuencia de Aminoácido , Alas de Animales/citología
18.
Science ; 305(5682): 361, 2004 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-15192154

RESUMEN

Reduced activity of the insulin/insulin-like growth factor signaling (IIS) pathway increases life-span in diverse organisms. We investigated the timing of the effect of reduced IIS on life-span and the role of a potential target tissue, the fat body. We overexpressed dFOXO, a downstream effector of IIS, in the adult Drosophila fat body, which increased life-span and reduced fecundity of females but had no effect on male life-span. The role of FOXO transcription factors and the adipose tissue are therefore evolutionarily conserved in the regulation of aging, and reduction of IIS in the adult is sufficient to mediate its effects on life-span and fecundity.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/fisiología , Cuerpo Adiposo/metabolismo , Longevidad , Factores de Transcripción/fisiología , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Fertilidad , Factores de Transcripción Forkhead , Expresión Génica , Masculino , Factores de Transcripción/genética
19.
Mol Cell Biol ; 24(2): 796-808, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14701751

RESUMEN

Phosphoinositide 3-kinases (PI3Ks) can be divided into three distinct classes (I, II, and III) on the basis of their domain structures and the lipid signals that they generate. Functions have been assigned to the class I and class III enzymes but have not been established for the class II PI3Ks. We have obtained the first evidence for a biological function for a class II PI3K by expressing this enzyme during Drosophila melanogaster development and by using deficiencies that remove the endogenous gene. Wild-type and catalytically inactive PI3K_68D transgenes have opposite effects on the number of sensory bristles and on wing venation phenotypes induced by modified epidermal growth factor (EGF) receptor signaling. These results indicate that the endogenous PI3K_68D may act antagonistically to the EGF receptor-stimulated Ras-mitogen-activated protein kinase pathway and downstream of, or parallel to, the Notch receptor. A class II polyproline motif in PI3K_68D can bind the Drk adaptor protein in vitro, primarily via the N-terminal SH3 domain of Drk. Drk may thus be important for the localization of PI3K_68D, allowing it to modify signaling pathways downstream of cell surface receptors. The phenotypes obtained are markedly distinct from those generated by expression of the Drosophila class I PI3K, which affects growth but not pattern formation.


Asunto(s)
Drosophila melanogaster/enzimología , Drosophila melanogaster/crecimiento & desarrollo , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Receptores ErbB/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Marcación de Gen , Genes de Insecto , Masculino , Proteínas de la Membrana/metabolismo , Mutación , Fenotipo , Fosfatidilinositol 3-Quinasas/clasificación , Fosfatidilinositol 3-Quinasas/genética , Receptores Notch , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Alas de Animales/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...