Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther Methods Clin Dev ; 32(1): 101187, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38327809

RESUMEN

Inherited retinal diseases are a leading and untreatable cause of blindness and are therefore candidate diseases for gene therapy. Recombinant vectors derived from adeno-associated virus (rAAV) are currently the most promising vehicles for in vivo therapeutic gene delivery to the retina. However, there is a need for novel AAV-based vectors with greater efficacy for ophthalmic applications, as underscored by recent reports of dose-related inflammatory responses in clinical trials of rAAV-based ocular gene therapies. Improved therapeutic efficacy of vectors would allow for decreases in the dose delivered, with consequent reductions in inflammatory reactions. Here, we describe the development of new rAAV vectors using bioconjugation chemistry to modify the rAAV capsid, thereby improving the therapeutic index. Covalent coupling of a mannose ligand, via the formation of a thiourea bond, to the amino groups of the rAAV capsid significantly increases vector transduction efficiency of both rat and nonhuman primate retinas. These optimized rAAV vectors have important implications for the treatment of a wide range of retinal diseases.

2.
Mol Ther Methods Clin Dev ; 28: 387-393, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36874242

RESUMEN

The subretinal injection protocol for the only approved retinal gene therapy (voretigene neparvovec-rzyl) includes air tamponade at the end of the procedure, but its effects on the subretinal bleb have not been described. In the present study, we evaluated the distribution of enhanced green fluorescent protein (EGFP) after subretinal injection of AAV2 in non-human primates (NHP) without (group A = 3 eyes) or with (group B = 3 eyes) air tamponade. The retinal expression of EGFP was assessed 1 month after subretinal injection with in vivo fundus photographs and fundus autofluorescence. In group A (without air), EGFP expression was limited to the area of the initial subretinal bleb. In group B (with air), EGFP was expressed in a much wider area. These data show that the buoyant force of air on the retina causes a wide subretinal diffusion of vector, away from the injection site. In the present paper, we discuss the beneficial and deleterious clinical effects of this finding. Whereas subretinal injection is likely to become more common with the coming of new gene therapies, the effects of air tamponade should be explored further to improve efficacy, reproducibility, and safety of the protocol.

3.
Proc Natl Acad Sci U S A ; 117(49): 31278-31289, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33229591

RESUMEN

Presbycusis, or age-related hearing loss (ARHL), is a major public health issue. About half the phenotypic variance has been attributed to genetic factors. Here, we assessed the contribution to presbycusis of ultrarare pathogenic variants, considered indicative of Mendelian forms. We focused on severe presbycusis without environmental or comorbidity risk factors and studied multiplex family age-related hearing loss (mARHL) and simplex/sporadic age-related hearing loss (sARHL) cases and controls with normal hearing by whole-exome sequencing. Ultrarare variants (allele frequency [AF] < 0.0001) of 35 genes responsible for autosomal dominant early-onset forms of deafness, predicted to be pathogenic, were detected in 25.7% of mARHL and 22.7% of sARHL cases vs. 7.5% of controls (P = 0.001); half were previously unknown (AF < 0.000002). MYO6, MYO7A, PTPRQ, and TECTA variants were present in 8.9% of ARHL cases but less than 1% of controls. Evidence for a causal role of variants in presbycusis was provided by pathogenicity prediction programs, documented haploinsufficiency, three-dimensional structure/function analyses, cell biology experiments, and reported early effects. We also established Tmc1N321I/+ mice, carrying the TMC1:p.(Asn327Ile) variant detected in an mARHL case, as a mouse model for a monogenic form of presbycusis. Deafness gene variants can thus result in a continuum of auditory phenotypes. Our findings demonstrate that the genetics of presbycusis is shaped by not only well-studied polygenic risk factors of small effect size revealed by common variants but also, ultrarare variants likely resulting in monogenic forms, thereby paving the way for treatment with emerging inner ear gene therapy.


Asunto(s)
Sordera/genética , Genes Dominantes , Mutación/genética , Presbiacusia/genética , Factores de Edad , Edad de Inicio , Animales , Estudios de Casos y Controles , Estudios de Cohortes , Heterocigoto , Humanos , Proteínas de la Membrana/genética , Ratones , MicroARNs/genética , Mitocondrias/genética , Secuenciación del Exoma
4.
Eur J Hum Genet ; 24(12): 1730-1738, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27460420

RESUMEN

Usher syndrome (USH), the most prevalent cause of hereditary deafness-blindness, is an autosomal recessive and genetically heterogeneous disorder. Three clinical subtypes (USH1-3) are distinguishable based on the severity of the sensorineural hearing impairment, the presence or absence of vestibular dysfunction, and the age of onset of the retinitis pigmentosa. A total of 10 causal genes, 6 for USH1, 3 for USH2, and 1 for USH3, and an USH2 modifier gene, have been identified. A robust molecular diagnosis is required not only to improve genetic counseling, but also to advance gene therapy in USH patients. Here, we present an improved diagnostic strategy that is both cost- and time-effective. It relies on the sequential use of three different techniques to analyze selected genomic regions: targeted exome sequencing, comparative genome hybridization, and quantitative exon amplification. We screened a large cohort of 427 patients (139 USH1, 282 USH2, and six of undefined clinical subtype) from various European medical centers for mutations in all USH genes and the modifier gene. We identified a total of 421 different sequence variants predicted to be pathogenic, about half of which had not been previously reported. Remarkably, we detected large genomic rearrangements, most of which were novel and unique, in 9% of the patients. Thus, our strategy led to the identification of biallelic and monoallelic mutations in 92.7% and 5.8% of the USH patients, respectively. With an overall 98.5% mutation characterization rate, the diagnosis efficiency was substantially improved compared with previously reported methods.


Asunto(s)
Pruebas Genéticas/métodos , Mutación , Síndromes de Usher/genética , Alelos , Hibridación Genómica Comparativa/métodos , Europa (Continente) , Exoma , Proteínas de la Matriz Extracelular/genética , Genes Modificadores , Humanos , Sensibilidad y Especificidad , Análisis de Secuencia de ADN/métodos , Síndromes de Usher/diagnóstico
5.
J Biol Chem ; 291(34): 17919-28, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27288410

RESUMEN

The primary role of the RNAi machinery is to promote mRNA degradation within the cytoplasm in a microRNA-dependent manner. However, both Dicer and the Argonaute protein family have expanded roles in gene regulation within the nucleus. To further our understanding of this role, we have identified chromatin binding sites for AGO2 throughout the 45S region of the human rRNA gene. The location of these sites was mirrored by the positions of AGO2 cross-linking sites identified via PAR-CLIP-seq. AGO2 binding to the rRNA within the nucleus was confirmed by RNA immunoprecipitation and quantitative-PCR. To explore a possible mechanism by which AGO2 could be recruited to the rRNA, we identified 1174 regions within the 45S rRNA transcript that have the ability to form a perfect duplex with position 2-6 (seed sequence) of each microRNA expressed in HEK293T cells. Of these potential AGO2 binding sites, 479 occurred within experimentally verified AGO2-rRNA cross-linking sites. The ability of AGO2 to cross-link to rRNA was almost completely lost in a DICER knock-out cell line. The transfection of miR-92a-2-3p into the noDICE cell line facilitated AGO2 cross-linking at a region of the rRNA that has a perfect seed match at positions 3-8, including a single G-U base pair. Knockdown of AGO2 within HEK293T cells causes a slight, but statistically significant increase in the overall rRNA synthesis rate but did not impact the ratio of processing intermediates or the recruitment of the Pol I transcription factor UBTF.


Asunto(s)
Proteínas Argonautas/metabolismo , MicroARNs/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , ARN Polimerasa I/metabolismo , ARN Ribosómico/biosíntesis , Proteínas Argonautas/genética , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Células K562 , MicroARNs/genética , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , ARN Polimerasa I/genética , ARN Ribosómico/genética , Ribonucleasa III/genética , Ribonucleasa III/metabolismo
6.
Orphanet J Rare Dis ; 10: 96, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26282398

RESUMEN

BACKGROUND: More than 70 % of the cases of congenital deafness are of genetic origin, of which approximately 80 % are non-syndromic and show autosomal recessive transmission (DFNB forms). To date, 60 DFNB genes have been identified, most of which cause congenital, severe to profound deafness, whereas a few cause delayed progressive deafness in childhood. We report the study of two Algerian siblings born to consanguineous parents, and affected by progressive hearing loss. METHOD: After exclusion of GJB2 (the gene most frequently involved in non-syndromic deafness in Mediterranean countries), we performed whole-exome sequencing in one sibling. RESULTS: A frame-shift variant (c.1014delC; p.Ser339Alafs*15) was identified in EPS8L2, encoding Epidermal growth factor receptor Pathway Substrate 8 L2, a protein of hair cells' stereocilia previously implicated in progressive deafness in the mouse. This variant predicts a truncated, inactive protein, or no protein at all owing to nonsense-mediated mRNA decay. It was detected at the homozygous state in the two clinically affected siblings, and at the heterozygous state in the unaffected parents and one unaffected sibling, whereas it was never found in a control population of 150 Algerians with normal hearing or in the Exome Variant Server database. CONCLUSION: Whole-exome sequencing allowed us to identify a new gene responsible for childhood progressive hearing loss transmitted on the autosomal recessive mode.


Asunto(s)
Genes Recesivos , Pérdida Auditiva/genética , Proteínas de la Membrana/genética , Niño , Conexina 26 , Conexinas , Consanguinidad , Progresión de la Enfermedad , Femenino , Mutación del Sistema de Lectura , Humanos , Masculino , Proteínas de Microfilamentos , Linaje
7.
Mol Genet Genomic Med ; 3(3): 189-96, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26029705

RESUMEN

The genetic heterogeneity of congenital hearing disorders makes molecular diagnosis expensive and time-consuming using conventional techniques such as Sanger sequencing of DNA. In order to design an appropriate strategy of molecular diagnosis in the Algerian population, we explored the diversity of the involved mutations by studying 65 families affected by autosomal recessive forms of nonsyndromic hearing impairment (DFNB forms), which are the most prevalent early onset forms. We first carried out a systematic screening for mutations in GJB2 and the recurrent p.(Arg34*) mutation in TMC1, which were found in 31 (47.7%) families and 1 (1.5%) family, respectively. We then performed whole exome sequencing in nine of the remaining families, and identified the causative mutations in all the patients analyzed, either in the homozygous state (eight families) or in the compound heterozygous state (one family): (c.709C>T: p.(Arg237*)) and (c.2122C>T: p.(Arg708*)) in OTOF, (c.1334T>G: p.(Leu445Trp)) in SLC26A4, (c.764T>A: p.(Met255Lys)) in GIPC3, (c.518T>A: p.(Cys173Ser)) in LHFPL5, (c.5336T>C: p.(Leu1779Pro)) in MYO15A, (c.1807G>T: p.(Val603Phe)) in OTOA, (c.6080dup: p.(Asn2027Lys*9)) in PTPRQ, and (c.6017del: p.(Gly2006Alafs*13); c.7188_7189ins14: p.(Val2397Leufs*2)) in GPR98. Notably, 7 of these 10 mutations affecting 8 different genes had not been reported previously. These results highlight for the first time the genetic heterogeneity of the early onset forms of nonsyndromic deafness in Algerian families.

8.
Proc Natl Acad Sci U S A ; 111(47): 16760-5, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25385647

RESUMEN

We used circular chromatin conformation capture (4C) to identify a physical contact in human pancreatic islets between the region near the insulin (INS) promoter and the ANO1 gene, lying 68 Mb away on human chromosome 11, which encodes a Ca(2+)-dependent chloride ion channel. In response to glucose, this contact was strengthened and ANO1 expression increased, whereas inhibition of INS gene transcription by INS promoter targeting siRNA decreased ANO1 expression, revealing a regulatory effect of INS promoter on ANO1 expression. Knockdown of ANO1 expression caused decreased insulin secretion in human islets, establishing a physical proximity-dependent feedback loop involving INS transcription, ANO1 expression, and insulin secretion. To explore a possible role of ANO1 in insulin metabolism, we carried out experiments in Ano1(+/-) mice. We observed reduced serum insulin levels and insulin-to-glucose ratios in high-fat diet-fed Ano1(+/-) mice relative to Ano1(+/+) mice fed the same diet. Our results show that determination of long-range contacts within the nucleus can be used to detect novel and physiologically relevant mechanisms. They also show that networks of long-range physical contacts are important to the regulation of insulin metabolism.


Asunto(s)
Canales de Cloruro/fisiología , Insulina/genética , Proteínas de Neoplasias/fisiología , Regiones Promotoras Genéticas , Animales , Anoctamina-1 , Canales de Cloruro/genética , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Ratones , Ratones Noqueados , Proteínas de Neoplasias/genética , Reacción en Cadena de la Polimerasa
9.
PLoS Genet ; 6(10): e1001142, 2010 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-21060806

RESUMEN

Methylation of specific lysine residues in core histone proteins is essential for embryonic development and can impart active and inactive epigenetic marks on chromatin domains. The ubiquitous nuclear protein PTIP is encoded by the Paxip1 gene and is an essential component of a histone H3 lysine 4 (H3K4) methyltransferase complex conserved in metazoans. In order to determine if PTIP and its associated complexes are necessary for maintaining stable gene expression patterns in a terminally differentiated, non-dividing cell, we conditionally deleted PTIP in glomerular podocytes in mice. Renal development and function were not impaired in young mice. However, older animals progressively exhibited proteinuria and podocyte ultra structural defects similar to chronic glomerular disease. Loss of PTIP resulted in subtle changes in gene expression patterns prior to the onset of a renal disease phenotype. Chromatin immunoprecipitation showed a loss of PTIP binding and lower H3K4 methylation at the Ntrk3 (neurotrophic tyrosine kinase receptor, type 3) locus, whose expression was significantly reduced and whose function may be essential for podocyte foot process patterning. These data demonstrate that alterations or mutations in an epigenetic regulatory pathway can alter the phenotypes of differentiated cells and lead to a chronic disease state.


Asunto(s)
Histonas/metabolismo , Enfermedades Renales/metabolismo , Podocitos/metabolismo , Transducción de Señal , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Enfermedad Crónica , Proteínas de Unión al ADN , Femenino , Perfilación de la Expresión Génica , Riñón/metabolismo , Riñón/patología , Riñón/ultraestructura , Enfermedades Renales/genética , Enfermedades Renales/patología , Glomérulos Renales/citología , Glomérulos Renales/metabolismo , Lisina/metabolismo , Masculino , Metilación , Ratones , Ratones Noqueados , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Podocitos/citología , Podocitos/ultraestructura , Receptor trkC/genética , Receptor trkC/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
Pflugers Arch ; 459(1): 115-30, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19756723

RESUMEN

We assessed the involvement of harmonin-b, a submembranous protein containing PDZ domains, in the mechanoelectrical transduction machinery of inner ear hair cells. Harmonin-b is located in the region of the upper insertion point of the tip link that joins adjacent stereocilia from different rows and that is believed to gate transducer channel(s) located in the region of the tip link's lower insertion point. In Ush1c (dfcr-2J/dfcr-2J) mutant mice defective for harmonin-b, step deflections of the hair bundle evoked transduction currents with altered speed and extent of adaptation. In utricular hair cells, hair bundle morphology and maximal transduction currents were similar to those observed in wild-type mice, but adaptation was faster and more complete. Cochlear outer hair cells displayed reduced maximal transduction currents, which may be the consequence of moderate structural anomalies of their hair bundles. Their adaptation was slower and displayed a variable extent. The latter was positively correlated with the magnitude of the maximal transduction current, but the cells that showed the largest currents could be either hyperadaptive or hypoadaptive. To interpret our observations, we used a theoretical description of mechanoelectrical transduction based on the gating spring theory and a motor model of adaptation. Simulations could account for the characteristics of transduction currents in wild-type and mutant hair cells, both vestibular and cochlear. They led us to conclude that harmonin-b operates as an intracellular link that limits adaptation and engages adaptation motors, a dual role consistent with the scaffolding property of the protein and its binding to both actin filaments and the tip link component cadherin-23.


Asunto(s)
Adaptación Fisiológica , Proteínas Portadoras/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Mecanotransducción Celular/fisiología , Potenciales de Acción/fisiología , Animales , Proteínas de Ciclo Celular , Proteínas del Citoesqueleto , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Mutantes , Microscopía Electrónica de Rastreo , Técnicas de Placa-Clamp
11.
Nature ; 456(7219): 255-8, 2008 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-18849963

RESUMEN

Although the cochlea is an amplifier and a remarkably sensitive and finely tuned detector of sounds, it also produces conspicuous mechanical and electrical waveform distortions. These distortions reflect nonlinear mechanical interactions within the cochlea. By allowing one tone to suppress another (masking effect), they contribute to speech intelligibility. Tones can also combine to produce sounds with frequencies not present in the acoustic stimulus. These sounds compose the otoacoustic emissions that are extensively used to screen hearing in newborns. Because both cochlear amplification and distortion originate from the outer hair cells-one of the two types of sensory receptor cells-it has been speculated that they stem from a common mechanism. Here we show that the nonlinearity underlying cochlear waveform distortions relies on the presence of stereocilin, a protein defective in a recessive form of human deafness. Stereocilin was detected in association with horizontal top connectors, lateral links that join adjacent stereocilia within the outer hair cell's hair bundle. These links were absent in stereocilin-null mutant mice, which became progressively deaf. At the onset of hearing, however, their cochlear sensitivity and frequency tuning were almost normal, although masking was much reduced and both acoustic and electrical waveform distortions were completely lacking. From this unique functional situation, we conclude that the main source of cochlear waveform distortions is a deflection-dependent hair bundle stiffness resulting from constraints imposed by the horizontal top connectors, and not from the intrinsic nonlinear behaviour of the mechanoelectrical transducer channel.


Asunto(s)
Cóclea/fisiología , Células Ciliadas Auditivas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Estimulación Acústica , Animales , Femenino , Regulación de la Expresión Génica , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/ultraestructura , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intercelular , Masculino , Ratones , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...