Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Curr Biol ; 34(16): 3778-3791.e4, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39096906

RESUMEN

All species shed DNA during life or in death, providing an opportunity to monitor biodiversity via environmental DNA (eDNA). In recent years, combining eDNA, high-throughput sequencing technologies, bioinformatics, and increasingly complete sequence databases has promised a non-invasive and non-destructive environmental monitoring tool. Modern agricultural systems are often large monocultures and so are highly vulnerable to disease outbreaks. Pest and pathogen monitoring in agricultural ecosystems is key for efficient and early disease prevention, lower pesticide use, and better food security. Although the air is rich in biodiversity, it has the lowest DNA concentration of all environmental media and yet is the route for windborne spread of many damaging crop pathogens. Our work suggests that ecosystems can be monitored efficiently using airborne nucleic acid information. Here, we show that the airborne DNA of microbes can be recovered, shotgun sequenced, and taxonomically classified, including down to the species level. We show that by monitoring a field growing key crops we can identify the presence of agriculturally significant pathogens and quantify their changing abundance over a period of 1.5 months, often correlating with weather variables. We add to the evidence that aerial eDNA can be used as a source for biomonitoring in terrestrial ecosystems, specifically highlighting agriculturally relevant species and how pathogen levels correlate with weather conditions. Our ability to detect dynamically changing levels of species and strains highlights the value of airborne eDNA in agriculture, monitoring biodiversity changes, and tracking taxa of interest.


Asunto(s)
Agricultura , Biodiversidad , Metagenómica , Metagenómica/métodos , ADN Ambiental/análisis , ADN Ambiental/genética , Microbiología del Aire , Ecosistema , Monitoreo del Ambiente/métodos , Metagenoma , Productos Agrícolas/microbiología , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación
3.
Int J Radiat Biol ; 100(2): 161-175, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37819879

RESUMEN

INTRODUCTION: Mallinckrodt Chemical Works was a uranium processing facility during the Manhattan Project from 1942 to 1966. Thousands of workers were exposed to low-dose-rates of ionizing radiation from external and internal sources. This third follow-up of 2514 White male employees updates cancer and noncancer mortality potentially associated with radiation and silica dust. MATERIALS AND METHODS: Individual, annualized organ doses were estimated from film badge records (n monitored = 2514), occupational chest x-rays (n = 2514), uranium urinalysis (n = 1868), radium intake through radon breath measurements (n = 487), and radon ambient measurements (n = 1356). Silica dust exposure from pitchblende processing was estimated (n = 1317). Vital status and cause of death determination through 2019 relied upon the National Death Index and Social Security Administration Epidemiological Vital Status Service. The analysis included standardized mortality ratios (SMRs), Cox proportional hazards, and Poisson regression models. RESULTS: Vital status was confirmed for 99.4% of workers (84.0% deceased). For a dose weighting factor of 1 for intakes of uranium, radium, and radon decay products, the mean and median lung doses were 65.6 and 29.9 mGy, respectively. SMRs indicated a difference in health outcomes between salaried and hourly workers, and more brain cancer deaths than expected [SMR: 1.79; 95% confidence interval (CI): 1.14, 2.70]. No association was seen between radiation and lung cancer [hazard ratio (HR) at 100 mGy: 0.93; 95%CI: 0.78, 1.11]. The relationship between radiation and kidney cancer observed in the previous follow-up was maintained (HR at 100 mGy: 2.07; 95%CI: 1.12, 3.79). Cardiovascular disease (CVD) also increased significantly with heart dose (HR at 100 mGy: 1.11; 95%CI: 1.02, 1.21). Exposures to dust ≥23.6 mg/m3-year were associated with nonmalignant kidney disease (NMKD) (HR: 3.02; 95%CI: 1.12, 8.16) and kidney cancer combined with NMKD (HR: 2.46; 95%CI: 1.04, 5.81), though without evidence of a dose-response per 100 mg/m3-year. CONCLUSIONS: This third follow-up of Mallinckrodt uranium processors reinforced the results of the previous studies. There was an excess of brain cancers compared with the US population, although no radiation dose-response was detected. The association between radiation and kidney cancer remained, though potentially due to few cases at higher doses. The association between levels of silica dust ≥23.6 mg/m3-year and NMKD also remained. No association was observed between radiation and lung cancer. A positive dose-response was observed between radiation and CVD; however, this association may be confounded by smoking, which was unmeasured. Future work will pool these data with other uranium processing worker cohorts within the Million Person Study.


Asunto(s)
Enfermedades Cardiovasculares , Neoplasias Renales , Neoplasias Pulmonares , Neoplasias Inducidas por Radiación , Enfermedades Profesionales , Exposición Profesional , Radio (Elemento) , Radón , Uranio , Humanos , Masculino , Uranio/efectos adversos , Estudios de Seguimiento , Estudios de Cohortes , Exposición Profesional/efectos adversos , Neoplasias Inducidas por Radiación/epidemiología , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/epidemiología , Neoplasias Renales/complicaciones , Polvo , Dióxido de Silicio , Enfermedades Profesionales/etiología
4.
Data Brief ; 47: 108990, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36879606

RESUMEN

This article presents metagenome-assembled genomes (MAGs) for both eukaryotic and prokaryotic organisms originating from the Arctic and Atlantic oceans, along with gene prediction and functional annotation for MAGs from both domains. Eleven samples from the chlorophyll-a maximum layer of the surface ocean were collected during two cruises in 2012; six from the Arctic in June-July on ARK-XXVII/1 (PS80), and five from the Atlantic in November on ANT-XXIX/1 (PS81). Sequencing and assembly was carried out by the Joint Genome Institute (JGI), who provide annotation of the assembled sequences, and 122 MAGs for prokaryotic organisms. A subsequent binning process identified 21 MAGs for eukaryotic organisms, mostly identified as Mamiellophyceae or Bacillariophyceae. The data for each MAG includes sequences in FASTA format, and tables of functional annotation of genes. For eukaryotic MAGs, transcript and protein sequences for predicted genes are available. A spreadsheet is provided summarising quality measures and taxonomic classifications for each MAG. These data provide draft genomes for uncultured marine microbes, including some of the first MAGs for polar eukaryotes, and can provide reference genetic data for these environments, or used in genomics-based comparison between environments.

5.
Bioinformatics ; 39(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36722204

RESUMEN

MOTIVATION: The assembly of contiguous sequence from metagenomic samples presents a particular challenge, due to the presence of multiple species, often closely related, at varying levels of abundance. Capturing diversity within species, for example, viral haplotypes, or bacterial strain-level diversity, is even more challenging. RESULTS: We present MetaCortex, a metagenome assembler that captures intra-species diversity by searching for signatures of local variation along assembled sequences in the underlying assembly graph and outputting these sequences in sequence graph format. We show that MetaCortex produces accurate assemblies with higher genome coverage and contiguity than other popular metagenomic assemblers on mock viral communities with high levels of strain-level diversity and on simulated communities containing simulated strains. AVAILABILITY AND IMPLEMENTATION: Source code is freely available to download from https://github.com/SR-Martin/metacortex, is implemented in C and supported on MacOS and Linux. The version used for the results presented in this article is available at doi.org/10.5281/zenodo.7273627. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Metagenoma , Metagenómica , Haplotipos , Programas Informáticos
6.
Int J Radiat Biol ; 99(2): 208-228, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35758985

RESUMEN

BACKGROUND: There are few occupational studies of women exposed to ionizing radiation. During World War II, the Tennessee Eastman Corporation (TEC) operated an electromagnetic field separation facility of 1152 calutrons to obtain enriched uranium (235U) used for the Hiroshima atomic bomb. Thousands of women were involved in these operations. MATERIALS AND METHODS: A new study was conducted of 13,951 women and 12,699 men employed at TEC between 1943 and 1947 for at least 90 days. Comprehensive dose reconstruction techniques were used to estimate lung doses from the inhalation of uranium dust based on airborne measurements. Vital status through 2018/2019 was obtained from the National Death Index, Social Security Death Index, Tennessee death records and online public record databases. Analyses included standardized mortality ratios (SMRs) and Cox proportional hazards models. RESULTS: Most workers were hourly (77.7%), white (95.6%), born before 1920 (58.3%), worked in dusty environments (57.0%), and had died (94.9%). Vital status was confirmed for 97.4% of the workers. Women were younger than men when first employed: mean ages 25.0 years and 33.0 years, respectively. The estimated mean absorbed dose to the lung was 32.7 mGy (max 1048 mGy) for women and 18.9 mGy (max 501 mGy) for men. The mean dose to thoracic lymph nodes (TLNs) was 127 mGy. Statistically significant SMRs were observed for lung cancer (SMR 1.25; 95% CI 1.19, 1.31; n = 1654), nonmalignant respiratory diseases (NMRDs) (1.23; 95% CI 1.19, 1.28; n = 2585), and cerebrovascular disease (CeVD) (1.13; 95% CI 1.08, 1.18; n = 1945). For lung cancer, the excess relative rate (ERR) at 100 mGy (95% CI) was 0.01 (-0.10, 0.12; n = 652) among women, and -0.15 (-0.38, 0.07; n = 1002) among men based on a preferred model for men with lung doses <300 mGy. NMRD and non-Hodgkin lymphoma were not associated with estimated absorbed dose to the lung or TLN. CONCLUSIONS: There was little evidence that radiation increased the risk of lung cancer, suggesting that inhalation of uranium dust and the associated high-LET alpha particle exposure to lung tissue experienced over a few years is less effective in causing lung cancer than other types of exposures. There was no statistically significant difference in the lung cancer risk estimates between men and women. The elevation of certain causes of death such as CeVD is unexplained and will require additional scrutiny of workplace or lifestyle factors given that radiation is an unlikely contributor since only the lung and lymph nodes received appreciable dose.


Asunto(s)
Neoplasias Pulmonares , Enfermedades Profesionales , Exposición Profesional , Uranio , Masculino , Humanos , Femenino , Adulto , Uranio/efectos adversos , Tennessee , Exposición Profesional/efectos adversos , Enfermedades Profesionales/etiología , Estudios de Cohortes , Neoplasias Pulmonares/etiología , Polvo
7.
Mol Ecol ; 32(23): 6345-6362, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36086900

RESUMEN

Anthropogenic activities are triggering global changes in the environment, causing entire communities of plants, pollinators and their interactions to restructure, and ultimately leading to species declines. To understand the mechanisms behind community shifts and declines, as well as monitoring and managing impacts, a global effort must be made to characterize plant-pollinator communities in detail, across different habitat types, latitudes, elevations, and levels and types of disturbances. Generating data of this scale will only be feasible with rapid, high-throughput methods. Pollen DNA metabarcoding provides advantages in throughput, efficiency and taxonomic resolution over traditional methods, such as microscopic pollen identification and visual observation of plant-pollinator interactions. This makes it ideal for understanding complex ecological networks and their responses to change. Pollen DNA metabarcoding is currently being applied to assess plant-pollinator interactions, survey ecosystem change and model the spatiotemporal distribution of allergenic pollen. Where samples are available from past collections, pollen DNA metabarcoding has been used to compare contemporary and past ecosystems. New avenues of research are possible with the expansion of pollen DNA metabarcoding to intraspecific identification, analysis of DNA in ancient pollen samples, and increased use of museum and herbarium specimens. Ongoing developments in sequencing technologies can accelerate progress towards these goals. Global ecological change is happening rapidly, and we anticipate that high-throughput methods such as pollen DNA metabarcoding are critical for understanding the evolutionary and ecological processes that support biodiversity, and predicting and responding to the impacts of change.


Asunto(s)
Código de Barras del ADN Taxonómico , Ecosistema , Código de Barras del ADN Taxonómico/métodos , Polen/genética , Plantas/genética , ADN , Polinización/genética
8.
J Radiol Prot ; 42(3)2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35785774

RESUMEN

The US National Council on Radiation Protection and Measurements (NCRP) convened Scientific Committee 6-12 (SC 6-12) to examine methods for improving dose estimates for brain tissue for internally deposited radionuclides, with emphasis on alpha emitters. This Memorandum summarises the main findings of SC 6-12 described in the recently published NCRP Commentary No. 31, 'Development of Kinetic and Anatomical Models for Brain Dosimetry for Internally Deposited Radionuclides'. The Commentary examines the extent to which dose estimates for the brain could be improved through increased realism in the biokinetic and dosimetric models currently used in radiation protection and epidemiology. A limitation of most of the current element-specific systemic biokinetic models is the absence of brain as an explicitly identified source region with its unique rate(s) of exchange of the element with blood. The brain is usually included in a large source region calledOtherthat contains all tissues not considered major repositories for the element. In effect, all tissues inOtherare assigned a common set of exchange rates with blood. A limitation of current dosimetric models for internal emitters is that activity in the brain is treated as a well-mixed pool, although more sophisticated models allowing consideration of different activity concentrations in different regions of the brain have been proposed. Case studies for 18 internal emitters indicate that brain dose estimates using current dosimetric models may change substantially (by a factor of 5 or more), or may change only modestly, by addition of a sub-model of the brain in the biokinetic model, with transfer rates based on results of published biokinetic studies and autopsy data for the element of interest. As a starting place for improving brain dose estimates, development of biokinetic models with explicit sub-models of the brain (when sufficient biokinetic data are available) is underway for radionuclides frequently encountered in radiation epidemiology. A longer-term goal is development of coordinated biokinetic and dosimetric models that address the distribution of major radioelements among radiosensitive brain tissues.


Asunto(s)
Protección Radiológica , Radioisótopos , Encéfalo , Cinética , Modelos Biológicos , Dosis de Radiación , Radiometría/métodos
9.
Health Phys ; 123(2): 165-172, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35594483

RESUMEN

ABSTRACT: Radiation dosimetry is central to virtually all radiation safety applications, optimization, and research. It relates to various individuals and population groups and to miscellaneous exposure situations-including planned, existing, and emergency situations. The International Commission on Radiological Protection (ICRP) has developed a new computational framework for internal dose estimations. Important components are more detailed and improved anatomical models and more realistic biokinetic models than before. The ICRP is currently producing new organ dose and effective dose coefficients for occupational intakes of radionuclides (OIR) and environmental intakes of radionuclides (EIR), which supersede the earlier dose coefficients in Publication 68 and the Publication 72 series, respectively. However, the ICRP only publishes dose coefficients for a single acute intake of a radionuclide and for an integration period of 50 years for intake by adults and to age 70 years for intakes by pre-adults. The new software, IDAC-Bio, performs committed absorbed dose and effective dose calculations for a selectable intake scenario, e.g., for a continuous intake or an intake during x hours per day and y days per week, and for any selected integration time. The software uses the primary data and models of the ICRP biokinetic models and numerically solves the biokinetic model and calculates the absorbed doses to organs and tissues in the ICRP reference human phantoms. The software calculates absorbed dose using the nuclear decay data in ICRP publication 107. IDAC-Bio is a further development and an important addition to the internal dosimetry program IDAC-Dose2.1. The results generated by the software were validated against published ICRP dose coefficients. The potential of the software is illustrated by dose calculations for a nuclear power plant worker who had been exposed to varying levels of 60 Co and who had undergone repeated whole-body measurements, and for a hypothetical member of the public subject to future releases of 148 Gd from neutron spallation in tungsten at the European Spallation Source.


Asunto(s)
Protección Radiológica , Anciano , Humanos , Fantasmas de Imagen , Dosis de Radiación , Radioisótopos , Radiometría/métodos , Programas Informáticos
10.
Microbiome ; 10(1): 67, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484634

RESUMEN

BACKGROUND: Phytoplankton communities significantly contribute to global biogeochemical cycles of elements and underpin marine food webs. Although their uncultured genomic diversity has been estimated by planetary-scale metagenome sequencing and subsequent reconstruction of metagenome-assembled genomes (MAGs), this approach has yet to be applied for complex phytoplankton microbiomes from polar and non-polar oceans consisting of microbial eukaryotes and their associated prokaryotes. RESULTS: Here, we have assembled MAGs from chlorophyll a maximum layers in the surface of the Arctic and Atlantic Oceans enriched for species associations (microbiomes) with a focus on pico- and nanophytoplankton and their associated heterotrophic prokaryotes. From 679 Gbp and estimated 50 million genes in total, we recovered 143 MAGs of medium to high quality. Although there was a strict demarcation between Arctic and Atlantic MAGs, adjacent sampling stations in each ocean had 51-88% MAGs in common with most species associations between Prasinophytes and Proteobacteria. Phylogenetic placement revealed eukaryotic MAGs to be more diverse in the Arctic whereas prokaryotic MAGs were more diverse in the Atlantic Ocean. Approximately 70% of protein families were shared between Arctic and Atlantic MAGs for both prokaryotes and eukaryotes. However, eukaryotic MAGs had more protein families unique to the Arctic whereas prokaryotic MAGs had more families unique to the Atlantic. CONCLUSION: Our study provides a genomic context to complex phytoplankton microbiomes to reveal that their community structure was likely driven by significant differences in environmental conditions between the polar Arctic and warm surface waters of the tropical and subtropical Atlantic Ocean. Video Abstract.


Asunto(s)
Metagenoma , Microbiota , Océano Atlántico , Clorofila A , Eucariontes/genética , Metagenoma/genética , Microbiota/genética , Filogenia , Fitoplancton/genética
11.
Genome Biol ; 23(1): 11, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35067223

RESUMEN

Adaptive sampling is a method of software-controlled enrichment unique to nanopore sequencing platforms. To test its potential for enrichment of rarer species within metagenomic samples, we create a synthetic mock community and construct sequencing libraries with a range of mean read lengths. Enrichment is up to 13.87-fold for the least abundant species in the longest read length library; factoring in reduced yields from rejecting molecules the calculated efficiency raises this to 4.93-fold. Finally, we introduce a mathematical model of enrichment based on molecule length and relative abundance, whose predictions correlate strongly with mock and complex real-world microbial communities.


Asunto(s)
Secuenciación de Nanoporos , Nanoporos , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenoma , Metagenómica , Análisis de Secuencia de ADN
12.
Int J Radiat Biol ; 98(4): 600-609, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-30452303

RESUMEN

PURPOSE: Scientific Committee 6-9 was established by the National Council on Radiation Protection and Measurements (NCRP), charged to provide guidance in the derivation of organ doses and their uncertainty, and produced a report, NCRP Report No. 178, Deriving Organ Doses and their Uncertainty for Epidemiologic Studies with a focus on the Million Person Study of Low-Dose Radiation Health Effects (MPS). This review summarizes the conclusions and recommendations of NCRP Report No. 178, with a concentration on and overview of the dosimetry and uncertainty approaches for the cohorts in the MPS, along with guidelines regarding the essential approaches used to estimate organ doses and their uncertainties (from external and internal sources) within the framework of an epidemiologic study. CONCLUSIONS: The success of the MPS is tied to the validity of the dose reconstruction approaches to provide realistic estimates of organ-specific radiation absorbed doses that are as accurate and precise as possible and to properly evaluate their accompanying uncertainties. The dosimetry aspects for the MPS are challenging in that they address diverse exposure scenarios for diverse occupational groups being studied over a period of up to 70 y. Specific dosimetric reconstruction issues differ among the varied exposed populations that are considered: atomic veterans, U.S. Department of Energy workers exposed to both penetrating radiation and intakes of radionuclides, nuclear power plant workers, medical radiation workers, and industrial radiographers. While a major source of radiation exposure to the study population comes from external gamma- or x-ray sources, for some of the study groups, there is also a meaningful component of radionuclide intakes that requires internal radiation dosimetry assessments.


Asunto(s)
Protección Radiológica , Radiometría , Humanos , Plantas de Energía Nuclear , Dosis de Radiación , Radioisótopos , Incertidumbre
13.
Int J Radiat Biol ; 98(4): 644-656, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-30513240

RESUMEN

BACKGROUND: Element-specific biokinetic models are used to reconstruct doses to systemic tissues from internal emitters. Typically, a systemic model for a radionuclide explicitly depicts only its dominant repositories. Remaining tissues and fluids are aggregated into a pool called Other tissue in which the radionuclide is assumed to be uniformly distributed. In the systemic biokinetic models used in radiation protection, the brain usually is addressed as an implicit mass fraction of Other tissue rather than an explicitly depicted repository. Due to increasing interest in radiation effects on the brain, efforts are underway to improve brain dosimetry for internal radiation sources. METHODS: We assessed potential improvements in brain dosimetry for internal emitters by explicitly modeling brain kinetics rather than treating the brain as a mass fraction of Other tissue. We selected 10 elements for which brain kinetics can be modeled using published biokinetic data. Injection dose coefficients were calculated for a relatively long-lived radioisotope of each element using each of two versions of the ICRP's latest systemic biokinetic model for the element, the original version and a modified version differing only in the treatment of brain. If the ICRP model contained an explicit brain pool, the modified version depicted brain instead as a mass fraction of Other tissue. If the ICRP model included brain in Other tissue, the modified version included an explicit brain pool with kinetics based on best available brain-specific data. RESULTS: The result for a given radionuclide is expressed as a ratio A:B, where A and B are the dose coefficients based on the versions of the model with and without an explicit brain pool, respectively. The following ratios A:B were obtained for the 10 radionuclides addressed here: 241Am, 0.13; 207Bi, 0.57; 234U, 0.81; 239Pu, 0.96; 203Hg (vapor), 1.4; 134Cs, 1.5; 54Mn, 1.7; 210Po, 1.7; 226Ra, 1.9; 210Pb, 3.3. These ratios indicate that a dose estimate for brain based on a biokinetic model with brain implicitly contained in Other tissue may substantially underestimate or substantially overestimate a dose estimate that reflects best available brain-specific biokinetic data. Of course, the reliability of the latter estimate depends on the quality of the underlying biokinetic data. CONCLUSIONS: Where feasible, the brain should be depicted explicitly in biokinetic models used in epidemiological studies addressing adverse effects of ionizing radiation.


Asunto(s)
Protección Radiológica , Encéfalo , Radioisótopos/efectos adversos , Radiometría , Reproducibilidad de los Resultados
14.
Int J Radiat Biol ; 98(4): 631-643, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-30561241

RESUMEN

BACKGROUND: As part of the Million Person Study (MPS), dose reconstructions for internal emitters have been performed for several U.S. facilities where large quantities of radionuclides were handled. The main challenges and dominant sources of potential error in retrospective dose estimates for internally exposed workers have been found to vary from site to site. This article discusses some important issues encountered in dose reconstructions performed for selected MPS sites and the approaches used to address those issues. The focus is on some foundational components of retrospective dose assessments that have received little attention in the literature. METHODS: The discussion is built around illustrative exposure data and dose reconstructions for workers at selected facilities addressed in the MPS. Related findings at some non-MPS sites are also discussed. RESULTS: Each of the following items has been found to be a major source of potential error in reconstructed tissue doses for some MPS sites: identification of all dosimetrically important internal emitters; the time pattern of intake; the mode(s) of intake; reliability of bioassay measurements; application of surrogate (coworker) information in lieu of, or in conjunction with, worker-specific monitoring data; the chemical and physical forms of inhaled radionuclides; and the relation of air monitoring data to actual intake. CONCLUSIONS: (1) Much of the dose reconstruction effort for internal emitters should be devoted to development of best feasible exposure scenarios. (2) Coworker data should be used to assign exposure scenarios or dose estimates to workers with missing exposure data only if there is compelling evidence of similar coworker exposure. (3) Bioassay data for some radionuclides and periods of operation at MPS sites are of questionable reliability due to sizable uncertainties associated with contamination, recovery, or background issues. (4) Dose estimates derived solely from air monitoring data should be treated as highly uncertain values in the absence of site-specific information demonstrating that the data are reasonably predictive of intake. (5) For intakes known or assumed to be via inhalation, the uncertainty in lung dose typically is much greater than the uncertainty in dose to systemic tissues, when dose estimates are based on urinary excretion data. (6) The lung dose estimate often can be improved through development of site-specific respiratory absorption parameter values. (7) There is generally insufficient site-specific information to justify development of site-specific systemic models.


Asunto(s)
Exposición Profesional , Humanos , Exposición Profesional/análisis , Dosis de Radiación , Radioisótopos , Reproducibilidad de los Resultados , Estudios Retrospectivos , Medición de Riesgo
15.
Int J Radiat Biol ; 98(4): 701-721, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-30652958

RESUMEN

PURPOSE: Mallinckrodt Chemical Works (MCW) was the earliest uranium processing facility in the United States, and in 1942 produced the uranium oxide used for the first sustained and controlled nuclear fission chain-reaction at the University of Chicago. A second follow-up through 2012 was conducted of 2514 White male workers employed 1942-1966 at the MCW for dose-response analyses for selected causes of death. MATERIALS AND METHODS: Organ/tissue-specific dose reconstruction included both external (12,686 MCW film badge records, 210 other facility film badge records, and 31,297 occupational chest x-rays) and internal sources of uranium and radium (39,451 urine bioassays, 2341 breath radon measurements, and 6846 ambient radon measurements). Dust measurements from pitchblende facilitated quantitative risk estimates for non-radiogenic effects on the lung and kidney. Vital status was determined from multiple sources including the National Death Index and the Social Security Administration. Cox regression models were used for dose response analyses. RESULTS: Vital status was determined for 99% of the workers, of whom 75% had died. The mean lung dose from all sources of external and internal radiation combined was 69.9 mGy (maximum 885 mGy; percent workers >100 mGy, 10%) and there was no evidence for a dose response for lung cancer (Hazard Ratio (HR) of 0.95 (95% CI = 0.81-1.12) at 100 mGy). A significant association with radiation was found for kidney cancer (HR of 1.73 (95% CI = 1.04-2.79) at 100 mGy) and suggested for nonmalignant kidney diseases (HR of 1.30 (95% CI = 0.96-1.76) at 100 mGy). A non-radiation etiology could not be discounted, however, because of the possible renal toxicities of uranium, a heavy metal, and silica, a component of pitchblende dust. Non-significant HRs at 100 mGy for other sites of a priori interest were 0.36 (0.06-2.03) for leukemia other than CLL, 0.68 (0.17-2.77) for liver cancer, and 1.23 (0.79-1.90) for non-Hodgkin lymphoma. The HR at 100 mGy was 1.09 (0.99-1.20) for ischemic heart disease. An association was seen between dust and combined malignant and non-malignant lung disease, HR at 10 mgm-3year-1 of 1.01 (1.00-1.02). CONCLUSIONS: A positive radiation dose response was observed for malignant and non-malignant kidney disease, and a negative dose response for malignant and non-malignant lung disease. Cumulative measures of dust were significantly associated with malignant and non-malignant lung disease and suggested for malignant and non-malignant kidney disease. Small numbers preclude definitive interpretations which will await the combination with similar studies of early uranium processing workers.


Asunto(s)
Neoplasias Pulmonares , Exposición Profesional , Radón , Uranio , Polvo , Humanos , Neoplasias Pulmonares/etiología , Masculino , Exposición Profesional/efectos adversos , Estados Unidos , Uranio/efectos adversos
16.
Int J Radiat Biol ; 98(4): 722-749, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34047625

RESUMEN

BACKGROUND: During World War II (WWII), the Manhattan Engineering District established a secret laboratory in the mountains of northern New Mexico. The mission was to design, construct and test the first atomic weapon, nicknamed 'The Gadget' that was detonated at the TRINITY site in Alamogordo, NM. After WWII, nuclear weapons research continued, and the laboratory became the Los Alamos National Laboratory (LANL). MATERIALS AND METHODS: The mortality experience of 26,328 workers first employed between 1943 and 1980 at LANL was determined through 2017. Included were 6157 contract workers employed by the ZIA Company. Organ dose estimates for each worker considered all sources of exposure, notably photons, neutrons, tritium, 238Pu and 239Pu. Vital status determination included searches within the National Death Index, Social Security Administration and New Mexico State Mortality Files. Standardized Mortality Ratios (SMR) and Cox regression models were used in the analyses. RESULTS: Most workers (55%) were hired before 1960, 38% had a college degree, 25% were female, 81% white, 13% Hispanic and 60% had died. Vital status was complete, with only 0.1% lost to follow-up. The mean dose to the lung for the 17,053 workers monitored for radiation was 28.6 weighted-mGy (maximum 16.8 weighted-Gy) assuming a Dose Weighting Factor of 20 for alpha particle dose to lung. The Excess Relative Risk (ERR) at 100 weighted-mGy was 0.01 (95%CI -0.02, 0.03; n = 839) for lung cancer. The ERR at 100 mGy was -0.43 (95%CI -1.11, 0.24; n = 160) for leukemia other than chronic lymphocytic leukemia (CLL), -0.06 (95%CI -0.16, 0.04; n = 3043) for ischemic heart disease (IHD), and 0.29 (95%CI 0.02, 0.55; n = 106) for esophageal cancer. Among the 6499 workers with measurable intakes of plutonium, an increase in bone cancer (SMR 2.44; 95%CI 0.98, 5.03; n = 7) was related to dose. The SMR for berylliosis was significantly high, based on 4 deaths. SMRs for Hispanic workers were significantly high for cancers of the stomach and liver, cirrhosis of the liver, nonmalignant kidney disease and diabetes, but the excesses were not related to radiation dose. CONCLUSIONS: There was little evidence that radiation increased the risk of lung cancer or leukemia. Esophageal cancer was associated with radiation, and plutonium intakes were linked to an increase of bone cancer. IHD was not associated with radiation dose. More precise evaluations will await the pooled analysis of workers with similar exposures such as at Rocky Flats, Savannah River and Hanford.


Asunto(s)
Neoplasias Esofágicas , Leucemia , Neoplasias Pulmonares , Neoplasias Inducidas por Radiación , Enfermedades Profesionales , Exposición Profesional , Plutonio , Femenino , Humanos , Exposición Profesional/efectos adversos
17.
Int J Radiat Biol ; 98(4): 750-768, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33900890

RESUMEN

PURPOSE: This paper reviews the history of the radium dial workers in the United States, summarizes the scientific progress made since the last evaluation in the early 1990s, and discusses current progress in updating the epidemiologic cohort and applying new dosimetric models for radiation risk assessment. BACKGROUND: The discoveries of radiation and radioactivity led quickly to medical and commercial applications at the turn of the 20th century, including the development of radioluminescent paint, made by combining radium with phosphorescent material and adhesive. Workers involved with the painting of dials and instruments included painters, handlers, ancillary workers, and chemists who fabricated the paint. Dial painters were primarily women and, prior to the mid to late 1920s, would use their lips to give the brush a fine point, resulting in high intakes of radium. The tragic experience of the dial painters had a significant impact on industrial safety standards, including protection measures taken during the Manhattan Project. The dial workers study has formed the basis for radiation protection standards for intakes of radionuclides by workers and the public. EPIDEMIOLOGIC APPROACH: The mortality experience of 3,276 radium dial painters and handlers employed between 1913 and 1949 is being determined through 2019. The last epidemiologic follow-up was 30 years ago when most of these workers were still alive. Nearly 65% were born before 1920, 37.5% were teenagers when first hired, and nearly 50% were hired before 1930 when the habit of placing brushes in mouths essentially stopped. Comprehensive dose reconstruction techniques are being applied to estimate organ doses for each worker related to the intake of 226Ra, 228Ra, and associated photon exposures. Time dependent dose-response analyses will estimate lifetime risks for specific causes of death. DISCUSSION: The study of radium dial workers is part of the Million Person Study of low-dose health effects that is designed to evaluate radiation risks among healthy American workers and veterans. Despite being one of the most important and influential radiation effects studies ever conducted, shifting programmatic responsibilities and declining funding led to the termination of the radium program of studies in the early 1990s. Renewed interest and opportunity have arisen. With scientific progress made in dosimetric methodology and models, the ability to perform a study over the entire life span, and the potential applicability to other scenarios such as medicine, environmental contamination and space exploration, the radium dial workers have once again come to the forefront.


Asunto(s)
Traumatismos por Radiación , Protección Radiológica , Radio (Elemento) , Adolescente , Femenino , Humanos , Radioisótopos/análisis , Radiometría/métodos , Estados Unidos
18.
Int J Radiat Biol ; 98(4): 795-821, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34669549

RESUMEN

BACKGROUND: Epidemiologic studies of radiation-exposed populations form the basis for human safety standards. They also help shape public health policy and evidence-based health practices by identifying and quantifying health risks of exposure in defined populations. For more than a century, epidemiologists have studied the consequences of radiation exposures, yet the health effects of low levels delivered at a low-dose rate remain equivocal. MATERIALS AND METHODS: The Million Person Study (MPS) of U.S. Radiation Workers and Veterans was designed to examine health effects following chronic exposures in contrast with brief exposures as experienced by the Japanese atomic bomb survivors. Radiation associations for rare cancers, intakes of radionuclides, and differences between men and women are being evaluated, as well as noncancers such as cardiovascular disease and conditions such as dementia and cognitive function. The first international symposium, held November 6, 2020, provided a broad overview of the MPS. Representatives from four U.S. government agencies addressed the importance of this research for their respective missions: U.S. Department of Energy (DOE), the Centers for Disease Control and Prevention (CDC), the U.S. Department of Defense (DOD), and the National Aeronautics and Space Administration (NASA). The major components of the MPS were discussed and recent findings summarized. The importance of radiation dosimetry, an essential feature of each MPS investigation, was emphasized. RESULTS: The seven components of the MPS are DOE workers, nuclear weapons test participants, nuclear power plant workers, industrial radiographers, medical radiation workers, nuclear submariners, other U.S. Navy personnel, and radium dial painters. The MPS cohorts include tens of thousands of workers with elevated intakes of alpha particle emitters for which organ-specific doses are determined. Findings to date for chronic radiation exposure suggest that leukemia risk is lower than after acute exposure; lung cancer risk is much lower and there is little difference in risks between men and women; an increase in ischemic heart disease is yet to be seen; esophageal cancer is frequently elevated but not myelodysplastic syndrome; and Parkinson's disease may be associated with radiation exposure. CONCLUSIONS: The MPS has provided provocative insights into the possible range of health effects following low-level chronic radiation exposure. When the 34 MPS cohorts are completed and combined, a powerful evaluation of radiation-effects will be possible. This final article in the MPS special issue summarizes the findings to date and the possibilities for the future. A National Center for Radiation Epidemiology and Biology is envisioned.


Asunto(s)
Armas Nucleares , Exposición a la Radiación , Biología , Femenino , Humanos , Masculino , Plantas de Energía Nuclear , Exposición a la Radiación/efectos adversos , Radiometría
19.
Nat Commun ; 12(1): 5483, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34531387

RESUMEN

Eukaryotic phytoplankton are responsible for at least 20% of annual global carbon fixation. Their diversity and activity are shaped by interactions with prokaryotes as part of complex microbiomes. Although differences in their local species diversity have been estimated, we still have a limited understanding of environmental conditions responsible for compositional differences between local species communities on a large scale from pole to pole. Here, we show, based on pole-to-pole phytoplankton metatranscriptomes and microbial rDNA sequencing, that environmental differences between polar and non-polar upper oceans most strongly impact the large-scale spatial pattern of biodiversity and gene activity in algal microbiomes. The geographic differentiation of co-occurring microbes in algal microbiomes can be well explained by the latitudinal temperature gradient and associated break points in their beta diversity, with an average breakpoint at 14 °C ± 4.3, separating cold and warm upper oceans. As global warming impacts upper ocean temperatures, we project that break points of beta diversity move markedly pole-wards. Hence, abrupt regime shifts in algal microbiomes could be caused by anthropogenic climate change.


Asunto(s)
Variación Genética , Microalgas/genética , Microbiota/genética , Fitoplancton/genética , Transcriptoma/genética , Regiones Antárticas , Regiones Árticas , Biodiversidad , Ciclo del Carbono , Cambio Climático , Ontología de Genes , Geografía , Calentamiento Global , Microalgas/clasificación , Microalgas/crecimiento & desarrollo , Océanos y Mares , Fitoplancton/clasificación , Fitoplancton/crecimiento & desarrollo , ARN Ribosómico 16S/genética , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN/métodos , Especificidad de la Especie , Temperatura
20.
BMC Bioinformatics ; 22(1): 124, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33726674

RESUMEN

BACKGROUND: The analysis of long reads or the assessment of assembly or target capture data often necessitates running alignments against reference genomes or gene sets. The aligner outputs are often parsed automatically by scripts, but many kinds of analysis can benefit from the understanding that can follow human inspection of individual alignments. Additionally, diagrams are a useful means of communicating assembly results to others. RESULTS: We developed Alvis, a simple command line tool that can generate visualisations for a number of common alignment analysis tasks. Alvis is a fast and portable tool that accepts input in a variety of alignment formats and will output production ready vector images. Additionally, Alvis will highlight potentially chimeric reads or contigs, a common source of misassemblies. CONCLUSION: Alvis diagrams facilitate improved understanding of assembly quality, enable read coverage to be visualised and potential errors to be identified. Additionally, we found that splitting chimeric reads using the output provided by Alvis can improve the contiguity of assemblies, while maintaining correctness.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , Humanos , Visualización de Datos , Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA