Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mech Behav Biomed Mater ; 65: 42-52, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27552598

RESUMEN

Collagen networks provide the main structural component of most tissues and represent an important ingredient for bio-mimetic materials for bio-medical applications. Here we study the mechanical properties of stiff collagen networks derived from three different echinoderms and show that they exhibit non-linear stiffening followed by brittle fracture. The disordered nature of the network leads to strong sample-to-sample fluctuations in elasticity and fracture strength. We perform numerical simulations of a three dimensional model for the deformation of a cross-linked elastic fibril network which is able to reproduce the macroscopic features of the experimental results and provide insights into the internal mechanics of stiff collagen networks. Our numerical model provides an avenue for the design of collagen membranes with tunable mechanical properties.


Asunto(s)
Colágeno/fisiología , Equinodermos/fisiología , Animales , Materiales Biomiméticos , Elasticidad , Matriz Extracelular , Modelos Teóricos , Estrés Mecánico
2.
Mar Environ Res ; 128: 46-57, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27063846

RESUMEN

The use of marine collagens is a hot topic in the field of tissue engineering. Echinoderms possess unique connective tissues (Mutable Collagenous Tissues, MCTs) which can represent an innovative source of collagen to develop collagen barrier-membranes for Guided Tissue Regeneration (GTR). In the present work we used MCTs from different echinoderm models (sea urchin, starfish and sea cucumber) to produce echinoderm-derived collagen membranes (EDCMs). Commercial membranes for GTR or soluble/reassembled (fibrillar) bovine collagen substrates were used as controls. The three EDCMs were similar among each other in terms of structure and mechanical performances and were much thinner and mechanically more resistant than the commercial membranes. Number of fibroblasts seeded on sea-urchin membranes were comparable to the bovine collagen substrates. Cell morphology on all EDCMs was similar to that of structurally comparable (reassembled) bovine collagen substrates. Overall, echinoderms, and sea urchins particularly, are alternative collagen sources to produce efficient GTR membranes. Sea urchins display a further advantage in terms of eco-sustainability by recycling tissues from food wastes.


Asunto(s)
Materiales Biocompatibles , Equinodermos , Animales
3.
Proc Natl Acad Sci U S A ; 113(41): 11408-11413, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27681632

RESUMEN

Dense monolayers of living cells display intriguing relaxation dynamics, reminiscent of soft and glassy materials close to the jamming transition, and migrate collectively when space is available, as in wound healing or in cancer invasion. Here we show that collective cell migration occurs in bursts that are similar to those recorded in the propagation of cracks, fluid fronts in porous media, and ferromagnetic domain walls. In analogy with these systems, the distribution of activity bursts displays scaling laws that are universal in different cell types and for cells moving on different substrates. The main features of the invasion dynamics are quantitatively captured by a model of interacting active particles moving in a disordered landscape. Our results illustrate that collective motion of living cells is analogous to the corresponding dynamics in driven, but inanimate, systems.


Asunto(s)
Movimiento Celular , Animales , Antígenos CD/metabolismo , Fenómenos Biomecánicos , Cadherinas/metabolismo , Bovinos , Línea Celular , Movimiento Celular/efectos de los fármacos , Colágeno/farmacología , Simulación por Computador , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Modelos Biológicos , Imagen de Lapso de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...