Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Neurotoxicology ; 99: 226-243, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37926220

RESUMEN

Exposure to pesticides is associated with an increased risk of developing Parkinson's disease (PD). Currently, rodent-based risk assessment studies cannot adequately capture neurodegenerative effects of pesticides due to a lack of human-relevant endpoints targeted at neurodegeneration. Thus, there is a need for improvement of the risk assessment guidelines. Specifically, a mechanistic assessment strategy, based on human physiology and (patho)biology is needed, which can be applied in next generation risk assessment. The Adverse Outcome Pathway (AOP) framework is particularly well-suited to provide the mechanistic basis for such a strategy. Here, we conducted a semi-systematic review in Embase and MEDLINE, focused on neurodegeneration and pesticides, to develop an AOP network for parkinsonian motor symptoms. Articles were labelled and included/excluded using the online platform Sysrev. Only primary articles, written in English, focused on effects of pesticides or PD model compounds in models for the brain were included. A total of 66 articles, out of the 1700 screened, was included. PD symptoms are caused by loss of function and ultimately death of dopaminergic neurons in the substantia nigra (SN). Our literature review highlights that a unique feature of these cells that increases their vulnerability is their reliance on continuous low-level influx of calcium. As such, excess intracellular calcium was identified as a central early Key Event (KE). This KE can lead to death of dopaminergic neurons of the SN, and eventually parkinsonian motor symptoms, via four distinct pathways: 1) activation of calpains, 2) endoplasmic reticulum stress, 3) impairment of protein degradation, and 4) oxidative damage. Several receptors have been identified that may serve as molecular initiating events (MIEs) to trigger one or more of these pathways. The proposed AOP network provides the biological basis that can be used to develop a mechanistic testing strategy that captures neurodegenerative effects of pesticides.


Asunto(s)
Rutas de Resultados Adversos , Enfermedad de Parkinson , Trastornos Parkinsonianos , Plaguicidas , Humanos , Enfermedad de Parkinson/metabolismo , Calcio/metabolismo , Trastornos Parkinsonianos/inducido químicamente , Neuronas Dopaminérgicas , Plaguicidas/efectos adversos , Sustancia Negra
2.
Environ Int ; 180: 108161, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37758599

RESUMEN

Food contact materials (FCMs) and food contact articles are ubiquitous in today's globalized food system. Chemicals migrate from FCMs into foodstuffs, so called food contact chemicals (FCCs), but current regulatory requirements do not sufficiently protect public health from hazardous FCCs because only individual substances used to make FCMs are tested and mostly only for genotoxicity while endocrine disruption and other hazard properties are disregarded. Indeed, FCMs are a known source of a wide range of hazardous chemicals, and they likely contribute to highly prevalent non-communicable diseases. FCMs can also include non-intentionally added substances (NIAS), which often are unknown and therefore not subject to risk assessment. To address these important shortcomings, we outline how the safety of FCMs may be improved by (1) testing the overall migrate, including (unknown) NIAS, of finished food contact articles, and (2) expanding toxicological testing beyond genotoxicity to multiple endpoints associated with non-communicable diseases relevant to human health. To identify mechanistic endpoints for testing, we group chronic health outcomes associated with chemical exposure into Six Clusters of Disease (SCOD) and we propose that finished food contact articles should be tested for their impacts on these SCOD. Research should focus on developing robust, relevant, and sensitive in-vitro assays based on mechanistic information linked to the SCOD, e.g., through Adverse Outcome Pathways (AOPs) or Key Characteristics of Toxicants. Implementing this vision will improve prevention of chronic diseases that are associated with hazardous chemical exposures, including from FCMs.


Asunto(s)
Contaminación de Alimentos , Enfermedades no Transmisibles , Humanos , Contaminación de Alimentos/análisis , Salud Pública , Embalaje de Alimentos , Alimentos , Sustancias Peligrosas/toxicidad
3.
Anim Reprod ; 20(2): e20230037, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37547566

RESUMEN

Plastic pollution in our environment is one of the most important global health concerns right now. Micro- and nanoplastics (MNPs) are taken up by both humans and animals, mainly via food and water, and can pass important epithelial barriers. Indications of plastics in the blood circulation have recently been shown in both humans and farm animals, but standardized methods to quantify the exact levels of MNPs to which we are exposed are currently lacking. Potential hazards of MNPs are being investigated very recently, including the impact that MNPs may have on reproduction. However, studies on mammalian reproduction are scarce, but a wealth of data from aquatic species indicates reproductive effects of MNPs. The first studies in rodent models demonstrate that MNPs reach the gonads after oral exposure and may impact offspring after maternal exposure during the gestational period. These effects may arise from the particles themselves or the presence of plastic contaminants that leach from plastics. Plastic contamination has been detected in human placentas, fetal fluid and the meconium of newborns, indicating the presence of plastics from the very first start of life. Currently there is a lack of studies that investigate the impact of MNP exposure during the periconception and embryonic period, whereas this is an extremely sensitive period that needs considerable attention with the growing amount of plastics in our environment.

4.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37108768

RESUMEN

Prenatal exposure to metabolism-disrupting chemicals (MDCs) has been linked to birth weight, but the molecular mechanisms remain largely unknown. In this study, we investigated gene expressions and biological pathways underlying the associations between MDCs and birth weight, using microarray transcriptomics, in a Belgian birth cohort. Whole cord blood measurements of dichlorodiphenyldichloroethylene (p,p'-DDE), polychlorinated biphenyls 153 (PCB-153), perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), and transcriptome profiling were conducted in 192 mother-child pairs. A workflow including a transcriptome-wide association study, pathway enrichment analysis with a meet-in-the-middle approach, and mediation analysis was performed to characterize the biological pathways and intermediate gene expressions of the MDC-birth weight relationship. Among 26,170 transcriptomic features, we successfully annotated five overlapping metabolism-related gene expressions associated with both an MDC and birth weight, comprising BCAT2, IVD, SLC25a16, HAS3, and MBOAT2. We found 11 overlapping pathways, and they are mostly related to genetic information processing. We found no evidence of any significant mediating effect. In conclusion, this exploratory study provides insights into transcriptome perturbations that may be involved in MDC-induced altered birth weight.


Asunto(s)
Contaminantes Ambientales , Efectos Tardíos de la Exposición Prenatal , Embarazo , Femenino , Humanos , Peso al Nacer/genética , Bélgica , Transcriptoma , Cohorte de Nacimiento , Sangre Fetal/química , Diclorodifenil Dicloroetileno , Exposición Materna/efectos adversos , Contaminantes Ambientales/análisis , Autoantígenos/análisis , Proteínas de Transporte de Membrana/análisis
5.
Chemosphere ; 314: 137695, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36587911

RESUMEN

BACKGROUND: Children are born with a burden of persistent organic pollutants (POPs) which may have endocrine disrupting properties and have been postulated to contribute to the rise in childhood obesity. The current evidence is equivocal, which may partly because many studies investigate the effects at one time point during childhood. We assessed associations between prenatal exposure to POPs and growth during infancy and childhood. METHODS: We used data from two Belgian cohorts with cord blood measurements of five organochlorines [(dichlorodiphenyldichloroethylene (p,p'-DDE), hexachlorobenzene (HCB), polychlorinated biphenyls (PCB-138, -150, -180)] (N = 1418) and two perfluoroalkyl substances [perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS)] (N = 346). We assessed infant growth, defined as body mass index (BMI) z-score change between birth and 2 years, and childhood growth, characterized as BMI trajectory from birth to 8 years. To evaluate associations between POP exposures and infant growth, we applied a multi-pollutant approach, using penalized elastic net regression with stability selection, controlling for covariates. To evaluate associations with childhood growth, we used single-pollutant linear mixed models with random effects for child individual, parametrized using a natural cubic spline formulation. RESULTS: PCB-153 was associated with increased and p,p'-DDE with decreased infant growth, although these results were imprecise. No clear association between any of the exposures and longer-term childhood growth trajectories was observed. We did not find evidence of effect modification by child sex. CONCLUSION: Our results suggest that prenatal exposure to PCB-153 and p,p'-DDE may affect infant growth in the first two years, with no evidence of more persistent effects.


Asunto(s)
Contaminantes Ambientales , Obesidad Infantil , Bifenilos Policlorados , Efectos Tardíos de la Exposición Prenatal , Embarazo , Femenino , Humanos , Niño , Lactante , Contaminantes Orgánicos Persistentes , Diclorodifenil Dicloroetileno , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Bifenilos Policlorados/toxicidad , Contaminantes Ambientales/análisis
6.
Molecules ; 28(2)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36677681

RESUMEN

Emerging advances in the field of in vitro toxicity testing attempt to meet the need for reliable human-based safety assessment in drug development. Intrahepatic cholangiocyte organoids (ICOs) are described as a donor-derived in vitro model for disease modelling and regenerative medicine. Here, we explored the potential of hepatocyte-like ICOs (HL-ICOs) in in vitro toxicity testing by exploring the expression and activity of genes involved in drug metabolism, a key determinant in drug-induced toxicity, and the exposure of HL-ICOs to well-known hepatotoxicants. The current state of drug metabolism in HL-ICOs showed levels comparable to those of PHHs and HepaRGs for CYP3A4; however, other enzymes, such as CYP2B6 and CYP2D6, were expressed at lower levels. Additionally, EC50 values were determined in HL-ICOs for acetaminophen (24.0−26.8 mM), diclofenac (475.5−>500 µM), perhexiline (9.7−>31.5 µM), troglitazone (23.1−90.8 µM), and valproic acid (>10 mM). Exposure to the hepatotoxicants showed EC50s in HL-ICOs comparable to those in PHHs and HepaRGs; however, for acetaminophen exposure, HL-ICOs were less sensitive. Further elucidation of enzyme and transporter activity in drug metabolism in HL-ICOs and exposure to a more extensive compound set are needed to accurately define the potential of HL-ICOs in in vitro toxicity testing.


Asunto(s)
Acetaminofén , Hepatocitos , Organoides , Humanos , Acetaminofén/metabolismo , Acetaminofén/toxicidad , Citocromo P-450 CYP3A/metabolismo , Hepatocitos/efectos de los fármacos , Hígado/metabolismo , Organoides/efectos de los fármacos , Pruebas de Toxicidad
7.
Toxicology ; 485: 153411, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36572169

RESUMEN

The disruption of thyroid hormone homeostasis by hexabromocyclododecane (HBCD) in rodents is hypothesized to be due to HBCD increasing the hepatic clearance of thyroxine (T4). The extent to which these effects are relevant to humans is unclear. To evaluate HBCD effects on humans, the activation of key hepatic nuclear receptors and the consequent disruption of thyroid hormone homeostasis were studied in different human hepatic cell models. The hepatoma cell line, HepaRG, cultured as two-dimensional (2D), sandwich (SW) and spheroid (3D) cultures, and primary human hepatocytes (PHH) cultured as sandwich were exposed to 1 and 10 µM HBCD and characterized for their transcriptome changes. Pathway enrichment analysis showed that 3D models, followed by SW, had a stronger transcriptome response to HBCD, which is explained by the higher expression of hepatic nuclear receptors but also greater accumulation of HBCD measured inside cells in these models. The Pregnane X receptor pathway is one of the pathways most upregulated across the three hepatic models, followed by the constitutive androstane receptor and general hepatic nuclear receptors pathways. Lipid metabolism pathways had a downregulation tendency in all exposures and in both PHH and the three cultivation modes of HepaRG. The activity of enzymes related to PXR/CAR induction and T4 metabolism were evaluated in the three different types of HepaRG cultures exposed to HBCD for 48 h. Reference inducers, rifampicin and PCB-153 did affect 2D and SW HepaRG cultures' enzymatic activity but not 3D. HBCD did not induce the activity of any of the studied enzymes in any of the cell models and culture methods. This study illustrates that for nuclear receptor-mediated T4 disruption, transcriptome changes might not be indicative of an actual adverse effect. Clarification of the reasons for the lack of translation is essential to evaluate new chemicals' potential to be thyroid hormone disruptors by altering thyroid hormone metabolism.


Asunto(s)
Hígado , Transcriptoma , Humanos , Hepatocitos , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Hormonas Tiroideas/metabolismo
8.
Sci Total Environ ; 860: 160403, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36417947

RESUMEN

Micro- and nanoplastics (MNPs) are ubiquitous in the environment and have recently been found in human lungs, blood and placenta. However, data on the possible effects of MNPs on human health is extremely scarce. The potential toxicity of MNPs during pregnancy, a period of increased susceptibility to environmental insults, is of particular concern. The placenta provides a unique interface between maternal and fetal circulation which is essential for in utero survival and healthy pregnancy. Placental toxicokinetics and toxicity of MNPs are still largely unexplored and the limited studies performed up to now focus mainly on polystyrene particles. Practical and ethical considerations limit research options in humans, and extrapolation from animal studies is challenging due to marked differences between species. Nevertheless, diverse in vitro and ex vivo human placental models exist e.g., plasma membrane vesicles, mono-culture and co-culture of placental cells, placenta-on-a-chip, villous tissue explants, and placental perfusion that can be used to advance this research area. The objective of this concise review is to recapitulate different human placental models, summarize the current understanding of placental uptake, transport and toxicity of MNPs and define knowledge gaps. Moreover, we provide perspectives for future research urgently needed to assess the potential hazards and risks of MNP exposure to maternal and fetal health.


Asunto(s)
Microplásticos , Placenta , Animales , Humanos , Embarazo , Femenino , Placenta/metabolismo , Microplásticos/metabolismo , Transporte Biológico , Feto , Técnicas de Cocultivo
9.
J Immunotoxicol ; 19(1): 125-133, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36422989

RESUMEN

Micro- and nanoplastics (MNP) are ubiquitously present in the environment due to their high persistence and bioaccumulative properties. Humans get exposed to MNP via various routes and consequently, they will encounter dendritic cells (DC) which are antigen-presenting cells involved in regulating immune responses. The consequences of DC exposure to MNP are an important, yet understudied, cause of concern. Therefore, this study aimed to assess the uptake and effect of MNP in vitro by exposing human monocyte-derived dendritic cells (MoDC) to virgin and environmentally weathered polystyrene (PS) particles of different sizes (0.2, 1, and 10 µm), at different concentrations ranging from 1 to 100 µg/ml. The effects of these particles were examined by measuring co-stimulatory surface marker (i.e. CD83 and CD86) expression. In addition, T-cell proliferation was measured via a mixed-leukocyte reaction (MLR) assay. The results showed that MoDC were capable of absorbing PS particles, and this was facilitated by pre-incubation in heat-inactivated (HI) plasma. Furthermore, depending on their size, weathered PS particles in particular caused increased expression of CD83 and CD86 on MoDC. Lastly, weathered 0.2 µm PS particles were able to functionally activate MoDC, leading to an increase in T-cell activation. These in vitro data suggest that, depending on their size, weathered PS particles might act as an immunostimulating adjuvant, possibly leading to T-cell sensitization.


Asunto(s)
Monocitos , Poliestirenos , Humanos , Poliestirenos/toxicidad , Activación de Linfocitos , Adyuvantes Inmunológicos , Células Dendríticas
10.
Environ Health Perspect ; 130(9): 97006, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36129437

RESUMEN

BACKGROUND: The first evidence of micro- and nanoplastic (MNP) exposure in the human placenta is emerging. However, the toxicokinetics and toxicity of MNPs in the placenta, specifically environmentally relevant particles, remain unclear. OBJECTIVES: We examined the transport, uptake, and toxicity of pristine and experimentally weathered MNPs in nonsyncytialized and syncytialized BeWo b30 choriocarcinoma cells. METHODS: We performed untargeted chemical characterization of pristine and weathered MNPs using liquid chromatography high-resolution mass spectrometry to evaluate compositional differences following particle weathering. We investigated cellular internalization of pristine and weathered polystyrene (PS; 0.05-10µm) and high-density polyethylene (HDPE; 0-80µm) particles using high-resolution confocal imaging and three-dimensional rendering. We investigated the influence of particle coating with human plasma on the cellular transport of PS particles using a transwell setup and examined the influence of acute MNP exposure on cell viability, damage to the plasma membrane, and expression of genes involved in steroidogenesis. RESULTS: Chemical characterization of MNPs showed a significantly higher number of unique features in pristine particles in comparison with weathered particles. Size-dependent placental uptake of pristine and weathered MNPs was observed in both placental cell types after 24 h exposure. Cellular transport was limited and size-dependent and was not influenced by particle coating with human plasma. None of the MNPs affected cell viability. Damage to the plasma membrane was observed only for 0.05µm PS particles in the nonsyncytialized cells at the highest concentration tested (100µg/mL). Modest down-regulation of hsd17b1 was observed in syncytialized cells exposed to pristine MNPs. DISCUSSION: Our results suggest that pristine and weathered MNPs are internalized and translocated in placental cells in vitro. Effects on gene expression observed upon pristine PS and HDPE particle exposure warrant further examination. More in-depth investigations are needed to better understand the potential health risks of MNP and chemicals associated with them under environmentally relevant exposure scenarios. https://doi.org/10.1289/EHP10873.


Asunto(s)
Microplásticos , Poliestirenos , Supervivencia Celular , Femenino , Humanos , Placenta/metabolismo , Polietileno/metabolismo , Polietileno/farmacología , Embarazo
11.
Environ Int ; 158: 106904, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34607043

RESUMEN

BACKGROUND: Prenatal exposure to endocrine-disrupting compounds (EDCs) may contribute to endocrine-related diseases and disorders later in life. Nevertheless, data on in utero exposure to these compounds are still scarce. OBJECTIVES: We investigated a wide range of known and novel nonpolar EDCs in full-term human amniotic fluid (AF), a representative matrix of direct fetal exposure. METHODS: Gas chromatography high-resolution mass spectrometry (GC-HRMS) was used for the targeted and non-targeted analysis of chemicals present in nonpolar AF fractions with dioxin-like, (anti-)androgenic, and (anti-)estrogenic activity. The contribution of detected EDCs to the observed activity was determined based on their relative potencies. The multitude of features detected by non-targeted analysis was tentatively identified through spectra matching and data filtering, and further investigated using curated and freely available sources to predict endocrine activity. Prioritized suspects were purchased and their presence in AF was chemically and biologically confirmed with GC-HRMS and bioassay analysis. RESULTS: Targeted analysis revealed 42 known EDCs in AF including dioxins and furans, polybrominated diphenyl ethers, pesticides, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons. Only 30% of dioxin activity and <1% estrogenic and (anti-)androgenic activity was explained by the detected compounds. Non-targeted analysis revealed 14,110 features of which 3,243 matched with library spectra. Our data filtering strategy tentatively identified 121 compounds. Further data mining and in silico predictions revealed in total 69 suspected EDCs. We selected 14 chemicals for confirmation, of which 12 were biologically active and 9 were chemically confirmed in AF, including the plasticizer diphenyl isophthalate and industrial chemical p,p'-ditolylamine. CONCLUSIONS: This study reveals the presence of a wide variety of nonpolar EDCs in direct fetal environment and for the first time identifies novel EDCs in human AF. Further assessment of the source and extent of human fetal exposure to these compounds is warranted.


Asunto(s)
Disruptores Endocrinos , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Líquido Amniótico/química , Disruptores Endocrinos/análisis , Disruptores Endocrinos/toxicidad , Femenino , Éteres Difenilos Halogenados , Humanos , Bifenilos Policlorados/análisis , Embarazo
12.
Environ Sci Technol ; 55(24): 16489-16501, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34843233

RESUMEN

Endocrine disrupting chemicals (EDCs) are able to deregulate the hormone system, notably through interactions with nuclear receptors (NRs). The mechanisms of action and biological effects of many EDCs have mainly been tested on human and mouse but other species such as zebrafish and xenopus are increasingly used as a model to study the effects of EDCs. Among NRs, peroxisome proliferator-activated receptor γ (PPARγ) is a main target of EDCs, for which most experimental data have been obtained from human and mouse models. To assess interspecies differences, we tested known human PPARγ ligands on reporter cell lines expressing either human, mouse, zebrafish, or xenopus PPARγ. Using these cell lines, we were able to highlight major interspecies differences. Known hPPARγ pharmaceutical ligands modulated hPPARγ and mPPARγ activities in a similar manner, while xPPARγ was less responsive and zfPPARγ was not modulated at all by these compounds. On the contrary, human liver X receptor (hLXR) ligands GW 3965 and WAY-252623 were only active on zfPPARγ. Among environmental compounds, several molecules activated the PPARγ of the four species similarly, e.g., phthalates (MEHP), perfluorinated compounds (PFOA, PFOS), and halogenated derivatives of BPA (TBBPA, TCBPA), but some of them like diclofenac and the organophosphorus compounds tri-o-tolyl phosphate and triphenyl phosphate were most active on zfPPARγ. This study confirms or shows for the first time the h, m, x, and zfPPARγ activities of several chemicals and demonstrates the importance of the use of species-specific models to study endocrine and metabolism disruption by environmental chemicals.


Asunto(s)
Disruptores Endocrinos , Preparaciones Farmacéuticas , Animales , Ligandos , Ratones , PPAR gamma , Pez Cebra
13.
Toxicology ; 461: 152900, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34411659

RESUMEN

The 3T3-L1 murine pre-adipocyte line is an established cell culture model for screening Metabolism Disrupting Chemicals (MDCs). Despite a need to accurately identify MDCs for further evaluation, relatively little research has been performed to comprehensively evaluate reproducibility across laboratories, assess factors that might contribute to varying degrees of differentiation between laboratories (media additives, plastics, cell source, etc.), or to standardize protocols. As such, the goals of this study were to assess interlaboratory variability of efficacy and potency outcomes for triglyceride accumulation and pre-adipocyte proliferation using the mouse 3T3-L1 pre-adipocyte cell assay to test chemicals. Ten laboratories from five different countries participated. Each laboratory evaluated one reference chemical (rosiglitazone) and three blinded test chemicals (tributyltin chloride, pyraclostrobin, and bisphenol A) using: 1) their Laboratory-specific 3T3-L1 Cells (LC) and their Laboratory-specific differentiation Protocol (LP), 2) Shared 3T3-L1 Cells (SC) with LP, 3) LC with a Shared differentiation Protocol (SP), and 4) SC with SP. Blinded test chemical responses were analyzed by the coordinating laboratory. The magnitude and range of bioactivities reported varied considerably across laboratories and test conditions, though the presence or absence of activity for each tested chemical was more consistent. Triglyceride accumulation activity determinations for rosiglitazone ranged from 90 to 100% across test conditions, but 30-70 % for pre-adipocyte proliferation; this was 40-80 % for triglyceride accumulation induced by pyraclostrobin, 80-100 % for tributyltin, and 80-100 % for bisphenol A. Consistency was much lower for pre-adipocyte proliferation, with 30-70 % active determinations for pyraclostrobin, 30-50 % for tributyltin, and 20-40 % for bisphenol A. Greater consistency was observed for the SC/SP assessment. As such, working to develop a standardized adipogenic differentiation protocol represents the best strategy for improving consistency of adipogenic responses using the 3T3-L1 model to reproducibly identify MDCs and increase confidence in reported outcomes.


Asunto(s)
Adipogénesis/efectos de los fármacos , Compuestos de Bencidrilo/toxicidad , Fenoles/toxicidad , Estrobilurinas/toxicidad , Compuestos de Trialquiltina/toxicidad , Células 3T3-L1 , Adipocitos/citología , Adipocitos/efectos de los fármacos , Animales , Diferenciación Celular , Proliferación Celular/efectos de los fármacos , Ratones , Reproducibilidad de los Resultados , Rosiglitazona/farmacología , Triglicéridos/metabolismo
14.
Commun Biol ; 4(1): 204, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33589679

RESUMEN

Pituitary hormones can use local signaling molecules to regulate target tissue functions. In adult zebrafish testes, follicle-stimulating hormone (Fsh) strongly increases the production of insulin-like 3 (Insl3), a Leydig cell-derived growth factor found in all vertebrates. Little information is available regarding Insl3 function in adult spermatogenesis. The Insl3 receptors Rxfp2a and 2b were expressed by type A spermatogonia and Sertoli and myoid cells, respectively, in zebrafish testis tissue. Loss of insl3 increased germ cell apoptosis in males starting at 9 months of age, but spermatogenesis appeared normal in fully fertile, younger adults. Insl3 changed the expression of 409 testicular genes. Among others, retinoic acid (RA) signaling was up- and peroxisome proliferator-activated receptor gamma (Pparg) signaling was down-regulated. Follow-up studies showed that RA and Pparg signaling mediated Insl3 effects, resulting in the increased production of differentiating spermatogonia. This suggests that Insl3 recruits two locally active nuclear receptor pathways to implement pituitary (Fsh) stimulation of spermatogenesis.


Asunto(s)
Insulina/metabolismo , Proteínas/metabolismo , Células de Sertoli/metabolismo , Espermatogénesis , Espermatogonias/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Apoptosis , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Insulina/genética , Masculino , PPAR gamma/genética , PPAR gamma/metabolismo , Proteínas/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Células de Sertoli/efectos de los fármacos , Transducción de Señal , Espermatogénesis/efectos de los fármacos , Espermatogonias/efectos de los fármacos , Espermatogonias/patología , Transcriptoma , Tretinoina/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética
16.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33477789

RESUMEN

Endocrine disrupting chemicals (EDCs) are exogenous chemicals which can disrupt any action of the endocrine system, and are an important class of substances which play a role in the Developmental Origins of Health and Disease (DOHaD) [...].


Asunto(s)
Disruptores Endocrinos/toxicidad , Sistema Endocrino/efectos de los fármacos , Monitoreo del Ambiente , Contaminantes Ambientales/toxicidad , Exposición a Riesgos Ambientales/prevención & control , Humanos
17.
Int J Mol Sci ; 21(10)2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32423144

RESUMEN

The purpose of this project report is to introduce the European "GOLIATH" project, a new research project which addresses one of the most urgent regulatory needs in the testing of endocrine-disrupting chemicals (EDCs), namely the lack of methods for testing EDCs that disrupt metabolism and metabolic functions. These chemicals collectively referred to as "metabolism disrupting compounds" (MDCs) are natural and anthropogenic chemicals that can promote metabolic changes that can ultimately result in obesity, diabetes, and/or fatty liver in humans. This project report introduces the main approaches of the project and provides a focused review of the evidence of metabolic disruption for selected EDCs. GOLIATH will generate the world's first integrated approach to testing and assessment (IATA) specifically tailored to MDCs. GOLIATH will focus on the main cellular targets of metabolic disruption-hepatocytes, pancreatic endocrine cells, myocytes and adipocytes-and using an adverse outcome pathway (AOP) framework will provide key information on MDC-related mode of action by incorporating multi-omic analyses and translating results from in silico, in vitro, and in vivo models and assays to adverse metabolic health outcomes in humans at real-life exposures. Given the importance of international acceptance of the developed test methods for regulatory use, GOLIATH will link with ongoing initiatives of the Organisation for Economic Development (OECD) for test method (pre-)validation, IATA, and AOP development.


Asunto(s)
Diabetes Mellitus/epidemiología , Disruptores Endocrinos/efectos adversos , Hígado Graso/epidemiología , Obesidad/epidemiología , Adipocitos/efectos de los fármacos , Adipocitos/patología , Diabetes Mellitus/inducido químicamente , Diabetes Mellitus/prevención & control , Hígado Graso/inducido químicamente , Hígado Graso/prevención & control , Humanos , Redes y Vías Metabólicas/efectos de los fármacos , Obesidad/inducido químicamente , Obesidad/prevención & control , Medición de Riesgo
18.
Sci Rep ; 10(1): 5311, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32210279

RESUMEN

Concerns about the neurotoxic potential of polyfluoroalkyl substances (PFAS) such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) increase, although their neurotoxic mechanisms of action remain debated. Considering the importance of the GABAA receptor in neuronal function, we investigated acute effects of PFAS on this receptor and on spontaneous neuronal network activity. PFOS (Lowest Observed Effect Concentration (LOEC) 0.1 µM) and PFOA (LOEC 1 µM) inhibited the GABA-evoked current and acted as non-competitive human GABAA receptor antagonists. Network activity of rat primary cortical cultures increased following exposure to PFOS (LOEC 100 µM). However, exposure of networks of human induced pluripotent stem cell (hiPSC)-derived neurons decreased neuronal activity. The higher sensitivity of the α1ß2γ2L GABAA receptor for PFAS as compared to neuronal networks suggests that PFAS have additional mechanisms of action, or that compensatory mechanisms are at play. Differences between rodent and hiPSC-derived neuronal networks highlight the importance of proper model composition. LOECs for PFAS on GABAA receptor and neuronal activity reported here are within or below the range found in blood levels of occupationally exposed humans. For PFOS, LOECs are even within the range found in human serum and plasma of the general population, suggesting a clear neurotoxic risk.


Asunto(s)
Ácidos Alcanesulfónicos/toxicidad , Caprilatos/toxicidad , Fluorocarburos/toxicidad , Células Madre Pluripotentes Inducidas/patología , Neuronas/patología , Receptores de GABA-A/química , Animales , Células Cultivadas , Humanos , Técnicas In Vitro , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oocitos/efectos de los fármacos , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Ratas , Receptores de GABA-A/metabolismo , Xenopus laevis
19.
Epigenetics Chromatin ; 13(1): 5, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-32051014

RESUMEN

BACKGROUND: Recent studies indicate that exposure to environmental chemicals may increase susceptibility to developing metabolic diseases. This susceptibility may in part be caused by changes to the epigenetic landscape which consequently affect gene expression and lead to changes in lipid metabolism. The epigenetic modifier enhancer of zeste 2 (Ezh2) is a histone H3K27 methyltransferase implicated to play a role in lipid metabolism and adipogenesis. In this study, we used the zebrafish (Danio rerio) to investigate the role of Ezh2 on lipid metabolism and chromatin status following developmental exposure to the Ezh1/2 inhibitor PF-06726304 acetate. We used the environmental chemical tributyltin (TBT) as a positive control, as this chemical is known to act on lipid metabolism via EZH-mediated pathways in mammals. RESULTS: Zebrafish embryos (0-5 days post-fertilization, dpf) exposed to non-toxic concentrations of PF-06726304 acetate (5 µM) and TBT (1 nM) exhibited increased lipid accumulation. Changes in chromatin were analyzed by the assay for transposase-accessible chromatin sequencing (ATAC-seq) at 50% epiboly (5.5 hpf). We observed 349 altered chromatin regions, predominantly located at H3K27me3 loci and mostly more open chromatin in the exposed samples. Genes associated to these loci were linked to metabolic pathways. In addition, a selection of genes involved in lipid homeostasis, adipogenesis and genes specifically targeted by PF-06726304 acetate via altered chromatin accessibility were differentially expressed after TBT and PF-06726304 acetate exposure at 5 dpf, but not at 50% epiboly stage. One gene, cebpa, did not show a change in chromatin, but did show a change in gene expression at 5 dpf. Interestingly, underlying H3K27me3 marks were significantly decreased at this locus at 50% epiboly. CONCLUSIONS: Here, we show for the first time the applicability of ATAC-seq as a tool to investigate toxicological responses in zebrafish. Our analysis indicates that Ezh2 inhibition leads to a partial primed state of chromatin linked to metabolic pathways which results in gene expression changes later in development, leading to enhanced lipid accumulation. Although ATAC-seq seems promising, our in-depth assessment of the cebpa locus indicates that we need to consider underlying epigenetic marks as well.


Asunto(s)
Cromatina/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Metabolismo de los Lípidos , Proteínas de Pez Cebra/metabolismo , Adipogénesis , Animales , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Cromatina/química , Ensamble y Desensamble de Cromatina , Secuenciación de Inmunoprecipitación de Cromatina , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Compuestos de Trialquiltina/farmacología , Pez Cebra , Proteínas de Pez Cebra/antagonistas & inhibidores
20.
Environ Sci Technol ; 53(24): 14649-14659, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31584268

RESUMEN

The developing fetus represents a highly sensitive period of exposure to endocrine disrupting compounds (EDCs). However, risk assessment of EDCs is hampered by the lack of data on direct in utero exposure. In this study, we developed a robust analytical methodology for the identification of a wide range of known and unknown EDCs in full-term amniotic fluid (AF). First, a method for extraction and fractionation of a broad range of polar and nonpolar EDCs was developed and validated. Maximal recoveries of reference compounds and minimal interference from the matrix were achieved with a combination of solid phase extraction and dispersive liquid/liquid extraction. Bioassay analysis using cell-based reporter gene assays revealed estrogenic, androgenic, and dioxin-like activity in AF extract corresponding to 1.4 nmol EEQ/L, 76.6 pmol DHT-EQ/L, and 10.1 pmol TEQ/L, respectively. Targeted analysis revealed 13 xenobiotics, phytoestrogens, and endogenous hormones in the AF extract that partly contributed to the bioassay activity. Separation of the complex mixture of chemicals in the AF extract with reversed-phase chromatographic fractionation and subsequent bioassay analysis revealed activity in fractions over a wide range of polarity, indicating diverse (unidentified) substances with potential ED activity. The method developed here represents the first methodological step in an effect-directed analysis approach to identify unknown biologically active compounds in the fetal environment.


Asunto(s)
Disruptores Endocrinos , Dibenzodioxinas Policloradas , Contaminantes Químicos del Agua , Líquido Amniótico , Humanos , Extracción en Fase Sólida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...