Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 5: 3717, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24758868

RESUMEN

Performing complex cryptographic tasks will be an essential element in future quantum communication networks. These tasks are based on a handful of fundamental primitives, such as coin flipping, where two distrustful parties wish to agree on a randomly generated bit. Although it is known that quantum versions of these primitives can offer information-theoretic security advantages with respect to classical protocols, a demonstration of such an advantage in a practical communication scenario has remained elusive. Here we experimentally implement a quantum coin flipping protocol that performs strictly better than classically possible over a distance suitable for communication over metropolitan area optical networks. The implementation is based on a practical plug and play system, developed by significantly enhancing a commercial quantum key distribution device. Moreover, we provide combined quantum coin flipping protocols that are almost perfectly secure against bounded adversaries. Our results offer a useful toolbox for future secure quantum communications.

2.
Opt Express ; 15(13): 8237-42, 2007 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-19547152

RESUMEN

We implement a photon-counting Optical Time Domain Reflectometer (OTDR) at 1.55mum which exhibits a high 2-point resolution and a high accuracy. It is based on a low temporal-jitter photon-counting module at 1.55mum. This detector is composed of a periodically poled Lithium niobate (PPLN) waveguide, which provides a wavelength conversion from near infrared to visible light, and a low jitter silicon photon-counting detector. With this apparatus, we obtain centimetre resolution over a measurement range of tens of kilometres.

3.
Opt Express ; 13(5): 1457-67, 2005 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-19495021

RESUMEN

The properties of a hollow core photonic bandgap fiber designed for 1.55 um transmission are investigated with special emphasis on polarization issues. Large and strongly wavelength dependent phase and group delays are found. At the same time the principle states of polarization move strongly and erratically as a function of wavelength, leading to strong mode coupling. Wavelength regions with high polarization dependent loss coincide with depolarization due to a polarization dependent coupling to surface modes at these wavelengths.

4.
Phys Rev Lett ; 93(20): 203902, 2004 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-15600925

RESUMEN

We present an easy way of observing superluminal group velocities using a birefringent optical fiber and other standard devices. In the theoretical analysis, we show that the optical properties of the setup can be described using the notion of "weak value." The experiment shows that the group velocity can indeed exceed c in the fiber; and we report the first direct observation of the so-called "signal velocity," the speed at which information propagates and that cannot exceed c.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA