Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Forensic Sci Int ; 361: 112072, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38838610

RESUMEN

Aquatic decomposition, as a forensic discipline, has been largely under-investigated as a consequence of the highly complex and influential variability of the water environment. The limitation to the adaptability of scenario specific results justifies the necessity for experimental research to increase our understanding of the aquatic environment and the development of post-mortem submersion interval (PMSI) methods of estimation. This preliminary research aims to address this contextual gap by assessing the variation in the bacterial composition of aquatic biofilms as explained by water parameter measurements over time, associated with clothed and bare decomposing remains. As part of three field investigations, a total of 9 still-born piglets (n = 3, per trial) were used as human analogues and were submerged bare or clothed in either natural cotton or synthetic nylon. Changes in the bacterial community composition of the water surrounding the submerged remains were assessed at 4 discrete time points post submersion (7, 14, 21 and 28 days) by 16 S rRNA gene Next Generation Sequencing analysis and compared to coinciding water parameter measurements (i.e. conductivity, total dissolved solids (TDS), salinity, pH, and dissolved oxygen (DO)). Bacterial diversity was found to change over time and relative to clothing type, where significant variation was observed between synthetic nylon samples and bare/cotton samples. Seasonality was a major driver of bacterial diversity, where substantial variation was found between samples collected in early winter to those collected in mid - late winter. Water parameter measures of pH, salinity and DO were identified to best explain the global bacterial community composition and their corresponding dynamic trajectory patterns overtime. Further investigation into bacterial community dynamics in accordance with varying environmental conditions could potentially lead to the determination of influential extrinsic factors that may drive bacterial activity in aquatic decomposition. Together with the identification of potential bacterial markers that complement the different stages of decomposition, this may provide a future approach to PMSI estimations.

2.
Microorganisms ; 8(9)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32825417

RESUMEN

The mucosal surfaces of fish play numerous roles including, but not limited to, protection against pathogens, nutrient digestion and absorption, excretion of nitrogenous wastes and osmotic regulation. During infection or disease, these surfaces act as the first line of defense, where the mucosal immune system interacts closely with the associated microbiota to maintain homeostasis. This study evaluated microbial changes across the gut and skin mucosal surfaces in yellowtail kingfish displaying signs of gut inflammation, as well as explored the host gene expression in these tissues in order to improve our understanding of the underlying mechanisms that contribute to the emergence of these conditions. For this, we obtained and analyzed 16S rDNA and transcriptomic (RNA-Seq) sequence data from the gut and skin mucosa of fish exhibiting different health states (i.e., healthy fish and fish at the early and late stages of enteritis). Both the gut and skin microbiota were perturbed by the disease. More specifically, the gastrointestinal microbiota of diseased fish was dominated by an uncultured Mycoplasmataceae sp., and fish at the early stage of the disease showed a significant loss of diversity in the skin. Using transcriptomics, we found that only a few genes were significantly differentially expressed in the gut. In contrast, gene expression in the skin differed widely between health states, in particular in the fish at the late stage of the disease. These changes were associated with several metabolic pathways that were differentially expressed and reflected a weakened host. Altogether, this study highlights the sensitivity of the skin mucosal surface in response to gut inflammation.

3.
Anim Microbiome ; 2(1): 26, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-33499964

RESUMEN

BACKGROUND: The use of antibiotics in aquaculture is a common infection treatment and is increasing in some sectors and jurisdictions. While antibiotic treatment can negatively shift gut bacterial communities, recovery and examination of these communities in fish of commercial importance is not well documented. Examining the impacts of antibiotics on farmed fish microbiota is fundamental for improving our understanding and management of healthy farmed fish. This work assessed yellowtail kingfish (Seriola lalandi) skin and gut bacterial communities after an oral antibiotic combination therapy in poor performing fish that displayed signs of enteritis over an 18-day period. In an attempt to promote improved bacterial re-establishment after antibiotic treatment, faecal microbiota transplantation (FMT) was also administered via gavage or in the surrounding seawater, and its affect was evaluated over 15 days post-delivery. RESULTS: Antibiotic treatment greatly perturbed the global gut bacterial communities of poor-performing fish - an effect that lasted for up to 18 days post treatment. This perturbation was marked by a significant decrease in species diversity and evenness, as well as a concomitant increase in particular taxa like an uncultured Mycoplasmataceae sp., which persisted and dominated antibiotic-treated fish for the entire 18-day period. The skin-associated bacterial communities were also perturbed by the antibiotic treatment, notably within the first 3 days; however, this was unlike the gut, as skin microbiota appeared to shift towards a more 'normal' (though disparate) state after 5 days post antibiotic treatment. FMT was only able to modulate the impacts of antibiotics in some individuals for a short time period, as the magnitude of change varied substantially between individuals. Some fish maintained certain transplanted gut taxa (i.e. present in the FMT inoculum; namely various Aliivibrio related ASVs) at Day 2 post FMT, although these were lost by Day 8 post FMT. CONCLUSION: As we observed notable, prolonged perturbations induced by antibiotics on the gut bacterial assemblages, further work is required to better understand the processes/dynamics of their re-establishment following antibiotic exposure. In this regard, procedures like FMT represent a novel approach for promoting improved microbial recovery, although their efficacy and the factors that support their success requires further investigation.

4.
Front Microbiol ; 8: 2664, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29379473

RESUMEN

The mucosal surfaces and associated microbiota of fish are an important primary barrier and provide the first line of defense against potential pathogens. An understanding of the skin and gill microbial assemblages and the factors which drive their composition may provide useful insights into the broad dynamics of fish host-microbial relationships, and may reveal underlying changes in health status. This is particularly pertinent to cultivated systems whereby various stressors may led to conditions (like enteritis) which impinge on productivity. As an economically important species, we assessed whether the outer-surface bacterial communities reflect a change in gut health status of cultivated Yellowtail Kingfish (Seriola lalandi). Active bacterial assemblages were surveyed from RNA extracts from swabs of the skin and gills by constructing Illumina 16S rRNA gene amplicon libraries. Proteobacteria and Bacteroidetes were predominant in both the skin and gills, with enrichment of key ß-proteobacteria in the gills (Nitrosomonadales and Ferrovales). Fish exhibiting early stage chronic lymphocytic enteritis comprised markedly different global bacterial assemblages compared to those deemed healthy and exhibiting late stages of the disease. This corresponded to an overall loss of diversity and enrichment of Proteobacteria and Actinobacteria, particularly in the gills. In contrast, bacterial assemblages of fish with late stage enteritis were generally similar to those of healthy individuals, though with some distinct taxa. In conclusion, gut health status is an important factor which defines the skin and gill bacterial assemblages of fish and likely reflects changes in immune states and barrier systems during the early onset of conditions like enteritis. This study represents the first to investigate the microbiota of the outer mucosal surfaces of fish in response to underlying chronic gut enteritis, revealing potential biomarkers for assessing fish health in commercial aquaculture systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...