Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38730869

RESUMEN

This paper presents the methodology of measuring chip temperature in the cutting zone in the rough milling of magnesium alloys. Infrared measurements are taken to determine the effect of variable cutting speed, feed per tooth, and depth of cut on the maximum temperature of chips. Thermal images of chip temperature for a generated collective frame and corresponding histograms are presented. Chip temperatures are presented in numerical terms as median and average values; maximum and minimum values; range; and standard deviation. Box plots are also shown for selected machining conditions. The problems arising during signal recording with a mean emissivity coefficient ε = 0.13, a value which is dedicated during machining magnesium alloys, are discussed in detail. Chip temperatures obtained in the tests do not exceed approx. 420 °C. Therefore, the dry rough milling process carried out with carbide tools with different blade geometries can be considered safe for a wide range of machining parameters. The proposed methodology of chip temperature measurement and result processing is a new and effective approach to safety assessment in the dry milling of magnesium alloys.

2.
Materials (Basel) ; 17(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38473664

RESUMEN

The production of thin-walled elements, especially those with large overall dimensions, poses numerous technological and operational problems. One of these problems relates to the machining-induced strain of such elements resulting from residual stress generated during the machining process. This study investigates the effect of the technological parameters of milling on residual stress in the surface layer of thin-walled plates made of aluminum alloy EN AW-2024 T351 for aerospace applications. The results have shown that residual stress increases with the cutting speed only to a certain point, reaching the maximum value at vc = 750 m/min. At a cutting speed vc = 900 m/min, residual stress significantly decreases, which probably results from the fact that the milling process has entered the High-Speed Cutting range, and this inference agrees with the results obtained for the cutting force component. Residual stress increases with the feed per tooth, while the relationship between residual stress and milling width is the same as that established for residual stress and variable cutting speed. Positive tensile stress is obtained in every tested case of the milling process. The results have also shown that the induced residual stress affects the strain of machined thin-walled parts, as proved by the strain results obtained for milled thin walls.

3.
Heliyon ; 10(4): e25860, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38390070

RESUMEN

The advanced software used in designing Wind Turbine Gearboxes (WTGs) does not solve the premature failure of the gearbox bearings, which still fail within 5%-20% of their design life by flaking. This issue increases the maintenance, downtime, and early replacement costs that limit the investment in the wind energy field. The majority of the previous research have focused on bearing subsurface investigation and the microstructural changes associated with the failure patterns. Conversely, surface investigation can elucidate significant information about the loading levels and contributors to the premature bearing failure. In this study, two bearings from a planetary stage of a failed multi-megawatt wind turbine gearbox underwent surface investigations and analyses. The analyses include indentations, hardness, roughness, and severe damage regions. The study shows that the contact loading stress exceeds the recommended and more than the compressive yield stresses of the bearing materials. The loading distribution on the bearing inner race during the gearbox operation is quite different from the theoretical loading. The transient loadings throughout the service reduce the Wind Turbine Gearbox Bearings (WTGBs) service life. Furthermore, the significant effects of skewing and slipping have been confirmed. Accordingly, the, lubricant filtration system and the design of the planetary stage are recommended to be improved to extend the fatigue life of the wind turbine gearbox bearings.

4.
Sensors (Basel) ; 23(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36991704

RESUMEN

Baler-wrappers are machines designed to produce high-quality forage, in accordance with the requirements of sustainable agriculture. Their complicated structure, and significant loads occurring during operation, prompted the creation of systems for controlling the machines' processes and measuring the most important work parameters, in this work. The compaction control system is based on a signal from the force sensors. It allows for detection differences in the compression of the bale and additionally protects against overload. The method of measuring the swath size, with the use of a 3D camera, was presented. Scanning the surface and travelled distance allows for estimating the volume of the collected material-making it possible to create yield maps (precision farming). It is also used to vary the dosage of ensilage agents, that control the fodder formation process, in relation to the moisture and temperature of the material. The paper also deals with the issue of measuring the weight of the bales-securing the machine against overload and collecting data for planning the bales' transport. The machine, equipped with the above-mentioned systems, allows for safer and more efficient work, and provides information about the state of the crop in relation to a geographical position, which allows for further inferences.

5.
Materials (Basel) ; 16(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36769960

RESUMEN

This paper presents a comparison of surface morphology obtained after machining Inconel 718 by the conventional insert, by Wiper insert and by using the cutting insert made by Spark Plasma Sintering (SPS). The shape of the special insert was obtained by employing Wire Electrical Discharge Machining (WEDM). The paper focuses on the description of surface topography after turning in dry and wet conditions. The performed investigation included longitudinal turning tests of Inconel 718 performed in a range of variable feeds. Surface topography measurements have been performed with the application of Nanoscan 855. The performed analysis includes a parametric evaluation of the obtained surfaces. With the Wiper insert, the Sa surface roughness parameter was obtained below 0.6 µm in the whole range of used feed rates. The surface roughness parameter Sa measured on the surface after machining by special insert depends on the cutting conditions (wet and dry machining). After, the dry machining parameter Sa, similar to the Wiper insert, was below 0.6 µm in the whole range of used feed rates. Unfortunately, cutting Inconel 718 using special insert with feed rate f = 0.25 mm/rev and cooling generated a surface with Sa parameter over 2 times higher than for the same feed rate without cooling, while this parameter, after turning by conventional insert, increases over 4 times using feed rate f = 0.25 mm/rev compared to feed rate f = 0.05 mm/rev during machining with cooling. This ratio is lower for conventional insert in dry machining because of sticking, which arises at the smallest feed rate according to previous research.

6.
Materials (Basel) ; 16(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36676452

RESUMEN

This piece of work deals with the influence assessment of the kind of coating of the cutting inserts and their wear on the dimensional accuracy and the top layer microstructure and roughness of the surface machined with constant cutting parameters vc = 85 m/min, f = 0.14 mm/obr and ap = 0.2 mm. The tests were performed on shafts made of Inconel 718 material under the conditions of finish turning, requiring a tool life of more than 20 min. The cutting inserts of identical geometry made of fine-grained carbide covered with coatings were applied by the PVD and CVD method. The values of the obtained diameter dimensions were assessed in reference to the assumed ones, as well as the values of the surface roughness and stereometry and the microstructure of the top layer. The nature and mechanisms of edge wear and its value expressed by the VBC parameter were also assessed. It was determined in the tests that the machined surface quality defined by the Ra and Sa roughness parameters and the dimensional accuracy were influenced not only by the coating microhardness but also by the method of applying the given coating. The lowest values of the tested roughness parameters were observed for the surface machined with an edge, with the S205 coating applied by the CVD method, which was characterized by the lowest microhardness. The edge with this coating also showed the lowest wear, defined by the VBC parameter, which translated into dimensional accuracy. Furthermore, the edge with the S205 coating also provided the best results with regard to the surface layer microstructure. The least favorable results, both in terms of dimensional accuracy and surface roughness, were obtained for the surface machined with a 1115-PVD-coated edge. The highest wear value was also recorded for this edge.

7.
Materials (Basel) ; 15(21)2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36363018

RESUMEN

The use of non-thermal plasma technology in producing green fuels is a much-appreciated environmentally friendly approach. In this study, an Al2O3-supported CrxZnS semiconductor catalyst was tested for hydrogen evolution from hydrogen sulfide (H2S) gas by using a single-layered dielectric barrier discharge (DBD) system. The Al2O3-supported CrxZnS catalyst (x = 0.20, 0.25, and 0.30) was produced by using a co-impregnation method and characterized for its structural and photocatalytic characteristics. The discharge column of the DBD system was filled with this catalyst and fed with hydrogen sulfide and argon gas. The DBD plasma was sustained with a fixed AC source of 10 kV where plasma produced species and UV radiations activated the catalyst to break H2S molecules under ambient conditions. The catalyst (hexagonal-cubic-sphalerite structure) showed an inverse relationship between the band gap and the dopant concentration. The hydrogen evolution decreased with an increase in dopant concentration in the nanocomposite. The Cr0.20ZnS catalyst showed excellent photocatalytic activity under the DBD exposure by delivering 100% conversion efficiency of H2S into hydrogen. The conversion decreased to 96% and 90% in case of Cr0.25ZnS and Cr0.30ZnS, respectively.

8.
Materials (Basel) ; 15(19)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36234231

RESUMEN

Spinel ferrites are widely investigated for their widespread applications in high-frequency and energy storage devices. This work focuses on enhancing the magnetic and dielectric properties of Ni0.25Cu0.25Zn0.50 ferrite series through non-thermal microwave plasma exposure under low-pressure conditions. A series of Ni0.25Cu0.25Zn0.50 ferrites was produced using a facile sol-gel auto-ignition approach. The post-synthesis plasma treatment was given in a low-pressure chamber by sustaining oxygen plasma with a microwave source. The structural formation of control and plasma-modified ferrites was investigated through X-ray diffraction analysis, which confirmed the formation of the fcc cubical structure of all samples. The plasma treatment did not affect crystallize size but significantly altered the surface porosity. The surface porosity increased after plasma treatment and average crystallite size was measured as about ~49.13 nm. Morphological studies confirmed changes in surface morphology and reduction in particle size on plasma exposure. The saturation magnetization of plasma-exposed ferrites was roughly 65% higher than the control. The saturation magnetization, remnant magnetization, and coercivity of plasma-exposed ferrites were calculated as 74.46 emu/g, 26.35 emu/g, and 1040 Oe, respectively. Dielectric characteristics revealed a better response of plasma-exposed ferrites to electromagnetic waves than control. These findings suggest that the plasma-exposed ferrites are good candidates for constructing high-frequency devices.

9.
Materials (Basel) ; 15(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36079292

RESUMEN

The surge in plastic waste production has forced researchers to work on practically feasible recovery processes. Pyrolysis is a promising and intriguing option for the recycling of plastic waste. Developing a model that simulates the pyrolysis of high-density polyethylene (HDPE) as the most common polymer is important in determining the impact of operational parameters on system behavior. The type and amount of primary products of pyrolysis, such as oil, gas, and waxes, can be predicted statistically using a multiple linear regression model (MLRM) in R software. To the best of our knowledge, the statistical estimation of kinetic rate constants for pyrolysis of high-density plastic through MLRM analysis using R software has never been reported in the literature. In this study, the temperature-dependent rate constants were fixed experimentally at 420 °C. The rate constants with differences of 0.02, 0.03, and 0.04 from empirically set values were analyzed for pyrolysis of HDPE using MLRM in R software. The added variable plots, scatter plots, and 3D plots demonstrated a good correlation between the dependent and predictor variables. The possible changes in the final products were also analyzed by applying a second-order differential equation solver (SODES) in MATLAB version R2020a. The outcomes of experimentally fixed-rate constants revealed an oil yield of 73% to 74%. The oil yield increased to 78% with a difference of 0.03 from the experimentally fixed rate constants, but light wax, heavy wax, and carbon black decreased. The increased oil and gas yield with reduced byproducts verifies the high significance of the conducted statistical analysis. The statistically predicted kinetic rate constants can be used to enhance the oil yield at an industrial scale.

10.
Materials (Basel) ; 15(18)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36143728

RESUMEN

Cortical bone machining is commonly used in craniofacial surgery. The shaping of bone surfaces requires a precise determination of the process's complexity due to the cutting tool's defined or undefined geometry. Therefore, research was carried out to assess the impact of the rake angle (γ), clearance angle and depth of cut (d) on the cortical bone machining process. Analysis was carried out based on the orthogonal cutting in three directions. The cutting tool shape was simplified, and the cutting forces and the chip-formation process were monitored. The highest values of the resultant cutting force and shear force were recorded for γ < 0. The specific cutting force decreases with the increase of d. Cutting in the transverse direction is characterized by the highest values of resultant cutting force and shear force. The coefficient of friction depends primarily on the d and takes a constant value or increases with the increase of γ. The tests showed that the chips are formed in the entire range of d ≥ 0.5 µm and create regular shapes for d ≥ 10 µm. The research novelty confirms that even negative cutting angles guarantee controlled cutting and can find wider application in surgical procedures.

11.
Materials (Basel) ; 15(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36013695

RESUMEN

Erosion of the elbow due to non-Newtonian viscous slurry flows is often observed in hydrocarbon transportation pipelines. This paper intends to study the erosion behavior of double offset U-bends and 180° U-bends for two-phase (liquid-sand) flow. A numerical simulation was conducted using the Discrete Phase Model (DPM) on carbon steel pipe bends with a 40 mm diameter and an R/D ratio of 1.5. The validity of the erosion model has been established by comparing it with the results quantified in the literature by experiment. While the maximum erosive wear rates of all evaluated cases were found to be quite different, the maximum erosion locations have been identified between 150° and 180° downstream at the outer curvature. It was seen that with the increase in disperse phase diameter, the erosive wear rate and impact area increased. Moreover, with the change of configuration from a 180° U-bend to a double offset U-bend, the influence of turbulence on the transit of the disperse phase decreases as the flow approaches downstream and results in less erosive wear in a double offset U-bend. Furthermore, the simulation results manifest that the erosive wear increases with an increase in flow velocity, and the erosion rate of the double offset U-bend was nearly 8.58 times less than the 180° U-bend for a carrier fluid velocity of 2 m/s and 1.82 times less for 4 m/s carrier fluid velocity. The erosion rate of the double offset U-bend was reduced by 120% compared to the 180° U-bend for 6 m/s in liquid-solid flow.

12.
Materials (Basel) ; 15(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35806682

RESUMEN

The development of cost-effective co-catalysts of high photocatalytic activity and recyclability is still a challenge in the energy transformation domain. In this study, 0D/2D Schottky heterojunctions, consisting of 0D ZnO and 2D Ti3C2, were successfully synthesized by the electrostatic self-assembling of ZnO nanoparticles on Ti3C2 nanosheets. In constructing these heterojunctions, Ti3C2 nanosheets acted as a co-catalyst for enhancing the transfer of excitons and their separation to support the photocatalytic response of ZnO. The as-prepared ZnO/Ti3C2 composites demonstrate an abbreviated charge transit channel, a huge interfacial contact area and the interfacial electrons' transport potential. The extended optical response and large reactive area of the ZnO/Ti3C2 composite promoted the formation of excitons and reactive sites on the photocatalyst's surface. The ZnO/Ti3C2 Schottky heterojunction showed significantly high photocatalytic activity for hydrogen production from a water-ethanol solution under the light illumination in the visible region. The hydrogen evolution overoptimized the ZnO/Ti3C2 composition with 30 wt.% of Ti3C2, which was eight times higher than the pristine ZnO. These findings can be helpful in developing 0D/2D heterojunction systems for photocatalytic applications by utilizing Ti3C2 as a low-cost co-catalyst.

13.
Nanomaterials (Basel) ; 12(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35745460

RESUMEN

Zinc oxide (ZnO) nanoparticles were loaded over non-thermal plasma (P1) and citric acid (P2)-functionalized cotton fabrics using a room temperature sonification process. The cotton samples were pretreated with dielectric barrier discharge (DBD) plasma and citric acid to introduce some reactive moieties on the fabric to enhance the adhesion power of ZnO nanoparticles with an average particle size of 41 nm. The nanoparticles were dispersed homogeneously on the surface of the P1 sample, which enhanced the antibacterial, UV protection and photocatalytic self-cleaning characteristics of ZnO-loaded fabric. The self-cleaning efficiency of P1 and P2 samples was measured to be about 77% and 63%, respectively. The inhibition zones of 5.5 mm and 5.4 mm were produced by sample P1 against E. coli and S. aureusbacteria, respectively, which were slightly higher than the inhibition zones produced by sample P2. The inhibition zone of the samples roughly decreased by 17% after performing 10 wash cycles. The unloaded cotton fabric had a UPF value of 70.02 units and blocking percentage of 70.92% and 76.54% for UVA and UVB radiations, respectively. The UVA-blocking capacity of samples P1 and P2 was 95.27% and 91.22, respectively. Similarly, the UVB blocking capacity was 94.11% and 92.65%, respectively. The pre-coating plasma treatment was found to be helpful in improving the UV-blocking ability of ZnO-loaded cotton fabric.

14.
Materials (Basel) ; 15(11)2022 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35683307

RESUMEN

This study is focused on the kinetics and adsorption isotherms of amine-functionalized magnesium ferrite (MgFe2O4) for treating the heavy metals in wastewater. A sol-gel route was adopted to produce MgFe2O4 nanoparticles. The surfaces of the MgFe2O4 nanoparticles were functionalized using primary amine (ethanolamine). The surface morphology, phase formation, and functionality of the MgFe2O4 nano-adsorbents were studied using the SEM, UV-visible, FTIR, and TGA techniques. The characterized nanoparticles were tested on their ability to adsorb the Pb2+, Cu2+, and Zn2+ ions from the wastewater. The kinetic parameters and adsorption isotherms for the adsorption of the metal ions by the amine-functionalized MgFe2O4 were obtained using the pseudo-first-order, pseudo-second-order, Langmuir, and Freundlich models. The pseudo-second order and Langmuir models best described the adsorption kinetics and isotherms, implying strong chemisorption via the formation of coordinative bonds between the amine groups and metal ions. The Langmuir equation revealed the highest adsorption capacity of 0.7 mmol/g for the amine-functionalized MgFe2O4 nano-adsorbents. The adsorption capacity of the nanoadsorbent also changed with the calcination temperature. The MgFe2O4 sample, calcined at 500 °C, removed the most of the Pb2+ (73%), Cu2+ (59%), and Zn2+ (62%) ions from the water.

15.
Materials (Basel) ; 15(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35591559

RESUMEN

The use of ZnO as a photocatalyst with a reduced recombination rate of charge carriers and maximum visible light harvesting remains a challenge for researchers. Herein, we designed and synthesized a unique La/ZnO/CNTs heterojunction system via a sol-gel method to evaluate its photocatalytic performance for hydrogen evolution. A ferrocene powder catalyst was tested for the production of CNT forests over Si/SiO2/Al2O3 substrate. A chemical vapor deposition (CVD) route was followed for the forest growth of CNTs. The La/ZnO/CNTs composite showed improved photocatalytic efficiency towards hydrogen evolution (184.8 mmol/h) in contrast to 10.2 mmol/h of pristine ZnO. The characterization results show that promoted photocatalytic activity over La/ZnO/NTs is attributed to the spatial separation of the charge carriers and extended optical absorption towards the visible light spectrum. The optimum photocatalyst shows a 16 h cycle performance for hydrogen evolution. The H2 evolution rate under visible light illumination reached 10.2 mmol/h, 145.9 mmol/h and 184.8 mmol/h over ZnO, La/ZnO and La/ZnO/CNTs, respectively. Among the prepared photocatalysts, ZnO showed the lowest H2 evolution rate due to the fast recombination of electron-hole pairs than heterojunction photocatalysts. This research paves the way for the development of ZnO and CNT-based photocatalysts with a wide optical response and reduced charge carrier recombinations.

16.
Materials (Basel) ; 15(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35629531

RESUMEN

This study investigated the production of Cu2+-doped CoFe2O4 nanoparticles (CFO NPs) using a facile sol-gel technique. The impact of Cu2+ doping on the lattice parameters, morphology, optical properties, and electrical properties of CFO NPs was investigated for applications in electrical devices. The XRD analysis revealed the formation of spinel-phased crystalline structures of the specimens with no impurity phases. The average grain size, lattice constant, cell volume, and porosity were measured in the range of 4.55-7.07 nm, 8.1770-8.1097 Å, 546.7414-533.3525 Å3, and 8.77-6.93%, respectively. The SEM analysis revealed a change in morphology of the specimens with a rise in Cu2+ content. The particles started gaining a defined shape and size with a rise in Cu2+ doping. The Cu0.12Co0.88Fe2O4 NPs revealed clear grain boundaries with the least agglomeration. The energy band gap declined from 3.98 eV to 3.21 eV with a shift in Cu2+ concentration from 0.4 to 0.12. The electrical studies showed that doping a trace amount of Cu2+ improved the electrical properties of the CFO NPs without producing any structural distortions. The conductivity of the Cu2+-doped CFO NPs increased from 6.66 × 10-10 to 5.26 × 10-6 ℧ cm-1 with a rise in Cu2+ concentration. The improved structural and electrical characteristics of the prepared Cu2+-doped CFO NPs made them a suitable candidate for electrical devices, diodes, and sensor technology applications.

17.
Materials (Basel) ; 15(8)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35454514

RESUMEN

AISI 316L stainless steel (SS) is one of the extensively used biomaterials to produce implants and medical devices. It provides a low-cost solution with ample mechanical properties, corrosion resistance, and biocompatibility compared to its counterpart materials. However, the implants made of this material are subjected to a short life span in human physiological conditions leading to the leaching of metal ions, thus limiting its use as a biomaterial. In this research, the addition of boron, titanium, and niobium with varying concentrations in the SS matrix has been explored. This paper explores the impact of material composition on modified SS alloy's physical and mechanical properties. The study's outcomes specify that the microhardness increases for all the alloy compositions, with a maximum increase of 64.68% for the 2 wt.% niobium added SS alloy. On the other hand, the tensile strength decreased to 297.40 MPa for the alloy containing 0.25 wt.% boron and 2 wt.% titanium additions compared to a tensile strength of 572.50 MPa for pure SS. The compression strength increased from 776 MPa for pure SS to 1408 MPa for the alloy containing niobium and titanium additions in equal concentrations.

18.
Materials (Basel) ; 15(5)2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35268995

RESUMEN

The optical properties and electric field enhancement of gold nanorods for different cases were investigated in this study. The numerical analysis was carried out to understand the functionality and working of gold nanorods, while the experimental portion of the work was focused on the efficiency of gold nanorods for targeted drug delivery. COMSOL Multiphysics was used for numerical analysis. The theoretical results suggest the use of gold nanorods (AuNRs) for anticancer applications. The resonance peaks for gold nanorods of 10 nm diameter were observed at 560 nm. The resonance peaks shifted towards longer wavelengths with an increase in nanorod size. The resonance peaks showed a shift of 140 nm with a change in nanorod length from 25 to 45 nm. On the experimental side, 22 nm, 35 nm and 47 nm long gold nanorods were produced using the seed-mediated growth method. The surface morphology of the nanorods, as well as their optical characteristics, were characterized. Later, gold nanorods were applied to the targeted delivery of the doxorubicin drug. Gold nanorods showed better efficiency for doxorubicin drug loading time, release time, loading temperature, and release temperature. These results reveal that AuNRs@DA possess good ability to load and deliver the drug directly to the tumorous cells since these cells show high temperature and acidity.

19.
Materials (Basel) ; 15(5)2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35269017

RESUMEN

The finite element analysis technique was used to investigate the suitability of silver nanorods, spheres, ellipsoids and core−shell structures for the hyperthermia treatment of cancer. The temperature of the silver nanostructures was raised from 42 to 46 °C, in order to kill the cancerous cells. The time taken by the nanostructures to attain this temperature, with external source heating, was also estimated. The heat transfer module in COMSOL Multiphysics was used for the finite element analysis of hyperthermia, based on silver nanostructures. The thermal response of different shapes of silver nanostructures was evaluated by placing them inside the spherical domain of the tumor tissue. The proposed geometries were heated at different time intervals. Optimization of the geometries was performed to achieve the best treatment temperature. It was observed that silver nanorods quickly attain the desired temperature, as compared to other shapes. The silver nanorods achieved the highest temperature of 44.3 °C among all the analyzed geometries. Moreover, the central volume, used to identify the thermal response, was the maximum for the silver nano-ellipsoids. Thermal equilibrium in the treatment region was attained after 0.5 µs of heating, which made these structures suitable for hyperthermia treatment.

20.
Materials (Basel) ; 15(5)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35269071

RESUMEN

Double strap lap adhesive joints between metal (AA 6061-T6) and composite (carbon/epoxy) laminates were fabricated and characterized based on strength. Hand layup methods were used to fabricate double strap match lap joints and double strap mismatch lap joints. These joints were compared for their strength under static and fatigue loadings. Fracture toughness (GIIC) was measured experimentally using tensile testing and validated with numerical simulations using the cohesive zone model (CZM) in ABAQUS/Standard. Fatigue life under tension-tension fluctuating sinusoidal loading was determined experimentally. Failure loads for both joints were in close relation, whereas the fatigue life of the double strap mismatch lap joint was longer than that of the double strap match lap joint. A cohesive dominating failure pattern was identified in tensile testing. During fatigue testing, it was observed that inhomogeneity (air bubble) in adhesive plays a negative role while the long time duration between two consecutive cycle spans has a positive effect on the life of joints.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...