Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 106(4-2): 045306, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36397575

RESUMEN

Perfectly matched layers (PMLs) are widely used in particle-in-cell simulations, in order to absorb electromagnetic waves that propagate out of the simulation domain. However, when charged particles cross the interface between the simulation domain and the PMLs, a number of numerical artifacts can arise. In order to mitigate these artifacts, we introduce a PML algorithm whereby the current deposited by the macroparticles in the PML is damped by an analytically derived optimal coefficient. The benefits of this algorithm are illustrated in practical simulations. In particular, it is shown that this algorithm is well suited for particles exiting the box in near-normal incidence, in the sense that the fields behave as if the exiting particle is propagating in an infinite vacuum.

2.
Phys Rev E ; 104(5-2): 055311, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34942705

RESUMEN

Explicit electromagnetic particle-in-cell (PIC) codes are typically limited by the Courant-Friedrichs-Lewy (CFL) condition, which implies that the timestep multiplied by the speed of light must be smaller than the smallest cell size. In the case of boosted-frame PIC simulations of plasma-based acceleration, this limitation can be a major hindrance, as the cells are often very elongated along the longitudinal direction and the timestep is thus limited by the small, transverse cell size. This entails many small-timestep PIC iterations and can limit the potential speed-up of the boosted-frame technique. Here, by using a CFL-free analytical spectral solver, and by mitigating additional numerical instabilities that arise at large timestep, we show that it is possible to overcome traditional limitations on the timestep and thereby realize the full potential of the boosted-frame technique over a much wider range of parameters.

3.
Phys Rev Lett ; 126(10): 104801, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33784117

RESUMEN

Generating high-quality laser-plasma accelerated electron beams requires carefully balancing a plethora of physical effects and is therefore challenging-both conceptually and in experiments. Here, we use Bayesian optimization of key laser and plasma parameters to flatten the longitudinal phase space of an ionization-injected electron bunch via optimal beam loading. We first study the concept with particle-in-cell simulations and then demonstrate it in experiments. Starting from an arbitrary set point, the plasma accelerator autonomously tunes the beam energy spread to the subpercent level at 254 MeV and 4.7 pC/MeV spectral density. Finally, we study a robust regime, which improves the stability of the laser-plasma accelerator and delivers sub-five-percent rms energy spread beams for 90% of all shots.

4.
Phys Rev E ; 102(1-1): 013202, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32794957

RESUMEN

Discretizing Maxwell's equations in Galilean (comoving) coordinates allows the derivation of a pseudospectral solver that eliminates the numerical Cherenkov instability for electromagnetic particle-in-cell simulations of relativistic plasmas flowing at a uniform velocity. Here we generalize this solver by incorporating spatial derivatives of arbitrary order, thereby enabling efficient parallelization by domain decomposition. This allows scaling of the algorithm to many distributed compute units. We derive the numerical dispersion relation of the algorithm and present a comprehensive theoretical stability analysis. The method is applied to simulations of plasma acceleration in a Lorentz-boosted frame of reference.

5.
Phys Rev E ; 100(6-1): 063208, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31962408

RESUMEN

We report on the deflection of laser pulses and accelerated electrons in a laser-plasma accelerator (LPA) by the effects of laser pulse front tilt and transverse density gradients. Asymmetry in the plasma index of refraction leads to laser steering, which can be due to a density gradient or spatiotemporal coupling of the laser pulse. The transverse forces from the skewed plasma wave can also lead to electron deflection relative to the laser. Quantitative models are proposed for both the laser and electron steering, which are confirmed by particle-in-cell simulations. Experiments with the BELLA Petawatt Laser are presented which show controllable 0.1-1 mrad laser and electron beam deflection from laser pulse front tilt. This has potential applications for electron beam pointing control, which is of paramount importance for LPA applications.

6.
Phys Rev E ; 94(5-1): 053305, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27967063

RESUMEN

Particle-in-cell (PIC) simulations of relativistic flowing plasmas are of key interest to several fields of physics (including, e.g., laser-wakefield acceleration, when viewed in a Lorentz-boosted frame) but remain sometimes infeasible due to the well-known numerical Cherenkov instability (NCI). In this article, we show that, for a plasma drifting at a uniform relativistic velocity, the NCI can be eliminated by simply integrating the PIC equations in Galilean coordinates that follow the plasma (also sometimes known as comoving coordinates) within a spectral analytical framework. The elimination of the NCI is verified empirically and confirmed by a theoretical analysis of the instability. Moreover, it is shown that this method is applicable both to Cartesian geometry and to cylindrical geometry with azimuthal Fourier decomposition.

7.
IEEE Comput Graph Appl ; 36(3): 22-35, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28113157

RESUMEN

The generation of short pulses of ion beams through the interaction of an intense laser with a plasma sheath offers the possibility of compact and cheaper ion sources for many applications--from fast ignition and radiography of dense targets to hadron therapy and injection into conventional accelerators. To enable the efficient analysis of large-scale, high-fidelity particle accelerator simulations using the Warp simulation suite, the authors introduce the Warp In situ Visualization Toolkit (WarpIV). WarpIV integrates state-of-the-art in situ visualization and analysis using VisIt with Warp, supports management and control of complex in situ visualization and analysis workflows, and implements integrated analytics to facilitate query- and feature-based data analytics and efficient large-scale data analysis. WarpIV enables for the first time distributed parallel, in situ visualization of the full simulation data using high-performance compute resources as the data is being generated by Warp. The authors describe the application of WarpIV to study and compare large 2D and 3D ion accelerator simulations, demonstrating significant differences in the acceleration process in 2D and 3D simulations. WarpIV is available to the public via https://bitbucket.org/berkeleylab/warpiv. The Warp In situ Visualization Toolkit (WarpIV) supports large-scale, parallel, in situ visualization and analysis and facilitates query- and feature-based analytics, enabling for the first time high-performance analysis of large-scale, high-fidelity particle accelerator simulations while the data is being generated by the Warp simulation suite. This supplemental material https://extras.computer.org/extra/mcg2016030022s1.pdf provides more details regarding the memory profiling and optimization and the Yee grid recentering optimization results discussed in the main article.

8.
PLoS Comput Biol ; 8(3): e1002447, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22479175

RESUMEN

Many theoretical and experimental studies suggest that range expansions can have severe consequences for the gene pool of the expanding population. Due to strongly enhanced genetic drift at the advancing frontier, neutral and weakly deleterious mutations can reach large frequencies in the newly colonized regions, as if they were surfing the front of the range expansion. These findings raise the question of how frequently beneficial mutations successfully surf at shifting range margins, thereby promoting adaptation towards a range-expansion phenotype. Here, we use individual-based simulations to study the surfing statistics of recurrent beneficial mutations on wave-like range expansions in linear habitats. We show that the rate of surfing depends on two strongly antagonistic factors, the probability of surfing given the spatial location of a novel mutation and the rate of occurrence of mutations at that location. The surfing probability strongly increases towards the tip of the wave. Novel mutations are unlikely to surf unless they enjoy a spatial head start compared to the bulk of the population. The needed head start is shown to be proportional to the inverse fitness of the mutant type, and only weakly dependent on the carrying capacity. The precise location dependence of surfing probabilities is derived from the non-extinction probability of a branching process within a moving field of growth rates. The second factor is the mutation occurrence which strongly decreases towards the tip of the wave. Thus, most successful mutations arise at an intermediate position in the front of the wave. We present an analytic theory for the tradeoff between these factors that allows to predict how frequently substitutions by beneficial mutations occur at invasion fronts. We find that small amounts of genetic drift increase the fixation rate of beneficial mutations at the advancing front, and thus could be important for adaptation during species invasions.


Asunto(s)
Evolución Biológica , Ecosistema , Emigración e Inmigración , Genética de Población , Modelos Genéticos , Mutación/genética , Selección Genética/genética , Simulación por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...