Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Chemosphere ; 284: 131335, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34328081

RESUMEN

The processes controlling antibiotics fate in ecosystems are poorly understood, yet their presence can inhibit bacterial growth and induce the development of bacterial resistance. Sulfamethoxazole (SMX) is one of the most frequently detected sulfonamides in natural environments due to its low metabolism and molecular properties. This work presents pioneering results on SMX biodegradation and impact in high altitude soils (Bolivian Altiplano), allowing a better understanding of the persistence, spread and impact of this antibiotic at the global watershed scale. Our results showed significant dissipation of SMX in relation to its adsorption, hydrolysis and biotransformation. However, biodegradation appears to be lower in these mountain soils than in lowland soils as widely described in the literature. The half-life of SMX ranges from 12 to 346 days in non-sterile soils. In one soil, no biotic degradation was observed, indicating a likely high persistence. Biodegradation was related to OC content and to proximity to urban activities. Regarding the study of the impacts of SMX, the DGGE results were less sensitive than the sequencing. In general, SMX strongly changes the structure and composition of the studied soils at high altitudes, which is comparable to the observations of other authors in lowland soils. The phylum Actinobacter showed high sensitivity to SMX. In contrast, the abundance of ɣ-proteobacteria remained almost unchanged. Soil contamination with SMX did not lead to the development of the studied resistance genes (sul1 and sul2) in soils where they were absent at the beginning of the experiment. Thus, the presence of SMX resistance genes seems to be related to irrigation with wastewater carrying the studied resistance genes.


Asunto(s)
Microbiota , Sulfametoxazol , Altitud , Antibacterianos , Bolivia , Suelo
2.
Sci Total Environ ; 576: 671-682, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27810754

RESUMEN

An increasing number of studies pointed out the ubiquitous presence of medical residues in surface and ground water as well as in soil compartments. Not only antibiotics can be found in the environment but also their transformation products about which little information is generally available. The development of bacterial resistance to antibiotics is particularly worrying as it can lead to sanitary and health problems. Studies about the dissemination of antibiotics and associated resistances in the Bolivian Altiplano are scarce. We provide baseline information on the occurrence of Sulfamethoxazole (SMX) and Trimethoprim (TMP) antibiotics as well as on the most common human SMX transformation products (TP) and on the occurrence of sulfonamide resistance genes. The studied water and soil compartments presented high levels of antibiotic pollution. This situation was shown to be mainly linked with uncontrolled discharges of treated and untreated wastewaters, resulting on the presence of antibiotics in the Titicaca Lake. SMX TPs were detected in surface waters and on soil sampled next to the wastewater treatment plant (WWTP). SMX resistance genes sulI and sulII were widely detected in the basin hydrological network, even in areas unpolluted with antibiotics. Mechanisms of co-selection of antibiotic- and metal- resistance may be involved in the prevalence of ARG's in pristine areas with no anthropogenic activity and free of antibiotic pollution.


Asunto(s)
Antibacterianos/análisis , Genes Bacterianos , Lagos/química , Contaminantes Químicos del Agua/análisis , Bolivia , Farmacorresistencia Bacteriana/genética , Sulfametoxazol/análisis , Trimetoprim/análisis , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA