Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Res Sq ; 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-38076926

RESUMEN

Genome-wide association studies have linked Iroquois-Homeobox 4 (IRX4) as a robust expression quantitative-trait locus associated with prostate cancer (PCa) risk. However, the intricate mechanism and regulatory factors governing IRX4 expression in PCa remain poorly understood. Here, we unveil enrichment of androgen-responsive gene signatures in metastatic prostate tumors exhibiting heightened IRX4 expression. Furthermore, we uncover a novel interaction between IRX4 and the androgen receptor (AR) co-factor, FOXA1, suggesting that IRX4 modulates PCa cell behavior through AR cistrome alteration. Remarkably, we identified a distinctive short insertion-deletion polymorphism (INDEL), upstream of the IRX4 gene that differentially regulates IRX4 expression through the disruption of AR binding. This INDEL emerges as the most significant PCa risk-associated variant within the 5p15 locus, in a genetic analysis involving 82,591 PCa cases and 61,213 controls and was associated with PCa survival in patients undergoing androgen-deprivation therapy. These studies suggest the potential of this INDEL as a prognostic biomarker for androgen therapy in PCa and IRX4 as a potential therapeutic target in combination with current clinical management.

2.
Nat Commun ; 13(1): 5680, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36167836

RESUMEN

Inter and intra-tumoral heterogeneity are major stumbling blocks in the treatment of cancer and are responsible for imparting differential drug responses in cancer patients. Recently, the availability of high-throughput screening datasets has paved the way for machine learning based personalized therapy recommendations using the molecular profiles of cancer specimens. In this study, we introduce Precily, a predictive modeling approach to infer treatment response in cancers using gene expression data. In this context, we demonstrate the benefits of considering pathway activity estimates in tandem with drug descriptors as features. We apply Precily on single-cell and bulk RNA sequencing data associated with hundreds of cancer cell lines. We then assess the predictability of treatment outcomes using our in-house prostate cancer cell line and xenografts datasets exposed to differential treatment conditions. Further, we demonstrate the applicability of our approach on patient drug response data from The Cancer Genome Atlas and an independent clinical study describing the treatment journey of three melanoma patients. Our findings highlight the importance of chemo-transcriptomics approaches in cancer treatment selection.


Asunto(s)
Antineoplásicos , Melanoma , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Expresión Génica , Humanos , Aprendizaje Automático , Masculino , Melanoma/tratamiento farmacológico , Melanoma/genética , Análisis de Secuencia de ARN
3.
Breast Cancer Res ; 24(1): 8, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35078508

RESUMEN

BACKGROUND: Triple-negative breast cancers (TNBC) have a relatively poor prognosis and responses to targeted therapies. Between 25 and 39% of TNBCs are claudin-low, a poorly differentiated subtype enriched for mesenchymal, stem cell and mitogen-activated signaling pathways. We investigated the role of the cell-surface co-receptor NRP1 in the biology of claudin-low TNBC. METHODS: The clinical prognostic value of NRP1 was determined by Kaplan-Meier analysis. GSVA analysis of METABRIC and Oslo2 transcriptomics datasets was used to correlate NRP1 expression with claudin-low gene signature scores. NRP1 siRNA knockdown was performed in MDA-MB-231, BT-549, SUM159 and Hs578T claudin-low cells and proliferation and viability measured by live cell imaging and DNA quantification. In SUM159 orthotopic xenograft models using NSG mice, NRP1 was suppressed by shRNA knockdown or systemic treatment with the NRP1-targeted monoclonal antibody Vesencumab. NRP1-mediated signaling pathways were interrogated by protein array and Western blotting. RESULTS: High NRP1 expression was associated with shorter relapse- and metastasis-free survival specifically in ER-negative BrCa cohorts. NRP1 was over-expressed specifically in claudin-low clinical samples and cell lines, and NRP1 knockdown reduced proliferation of claudin-low cells and prolonged survival in a claudin-low orthotopic xenograft model. NRP1 inhibition suppressed expression of the mesenchymal and stem cell markers ZEB1 and ITGA6, respectively, compromised spheroid-initiating capacity and exerted potent anti-tumor effects on claudin-low orthotopic xenografts (12.8-fold reduction in endpoint tumor volume). NRP1 was required to maintain maximal RAS/MAPK signaling via EGFR and PDGFR, a hallmark of claudin-low tumors. CONCLUSIONS: These data implicate NRP1 in the aggressive phenotype of claudin-low breast cancer and offer a novel targeted therapeutic approach to this poor prognosis subtype.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Animales , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Claudinas/metabolismo , Femenino , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Recurrencia Local de Neoplasia , Neuropilina-1/genética , Neuropilina-1/uso terapéutico , Células Madre/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Proteínas ras
4.
Endocr Relat Cancer ; 28(5): 353-375, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33794502

RESUMEN

Hyperleptinaemia is a well-established therapeutic side effect of drugs inhibiting the androgen axis in prostate cancer (PCa), including main stay androgen deprivation therapy (ADT) and androgen targeted therapies (ATT). Given significant crossover between the adipokine hormone signalling of leptin and multiple cancer-promoting hallmark pathways, including growth, proliferation, migration, angiogenesis, metabolism and inflammation, targeting the leptin axis is therapeutically appealing, especially in advanced PCa where current therapies fail to be curative. In this study, we uncover leptin as a novel universal target in PCa and are the first to highlight increased intratumoural leptin and leptin receptor (LEPR) expression in PCa cells and patients' tumours exposed to androgen deprivation, as is observed in patients' tumours of metastatic and castrate resistant (CRPC) PCa. We also reveal the world-first preclinical evidence that demonstrates marked efficacy of targeted leptin-signalling blockade, using Allo-aca, a potent, specific, and safe LEPR peptide antagonist. Allo-aca-suppressed tumour growth and delayed progression to CRPC in mice bearing LNCaP xenografts, with reduced tumour vascularity and altered pathways of apoptosis, transcription/translation, and energetics in tumours determined as potential mechanisms underpinning anti-tumour efficacy. We highlight LEPR blockade in combination with androgen axis inhibition represents a promising new therapeutic strategy vital in advanced PCa treatment.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Antagonistas de Andrógenos/uso terapéutico , Andrógenos/metabolismo , Animales , Línea Celular Tumoral , Xenoinjertos , Humanos , Leptina , Masculino , Ratones , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/metabolismo
5.
Endocr Relat Cancer ; 27(12): 711-729, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33112829

RESUMEN

Adiponectin is an adipokine originally identified as dysregulated in obesity, with a key role in insulin sensitisation and in maintaining systemic energy balance. However, adiponectin is progressively emerging as having aberrant signalling in multiple disease states, including prostate cancer (PCa). Circulating adiponectin is lower in patients with PCa than in non-malignant disease, and inversely correlates with cancer severity. More severe hypoadiponectinemia is observed in advanced PCa than in organ-confined disease. Given the crossover between adiponectin signalling and several cancer hallmark pathways that influence PCa growth and progression, we hypothesised that targeting dysregulated adiponectin signalling may inhibit tumour growth and progression. We, therefore, aimed to test the efficacy of correcting the hypoadiponectinemia and dysregulated adiponectin signalling observed in PCa, a world-first PCa therapeutic approach, using peptide adiponectin receptor (ADIPOR) agonist ADP355 in mice bearing subcutaneous LNCaP xenografts. We demonstrate significant evidence for PCa growth inhibition by ADP355, which slowed tumour growth and delayed progression of serum PCa biomarker, prostate-specific antigen (PSA), compared to vehicle. ADP355 conferred a significant advantage by increasing time on treatment with a delayed ethical endpoint. mRNA sequencing and protein expression analyses of tumours revealed ADP355 PCa growth inhibition may be through altered cellular energetics, cellular stress and protein synthesis, which may culminate in apoptosis, as evidenced by the increased apoptotic marker in ADP355-treated tumours. Our findings highlight the efficacy of ADP355 in targeting classical adiponectin-associated signalling pathways in vivo and provide insights into the promising future for modulating adiponectin signalling through ADIPOR agonism as a novel anti-tumour treatment modality.


Asunto(s)
Neoplasias de la Próstata/terapia , Receptores de Adiponectina/uso terapéutico , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Desnudos
6.
Cancer Metab ; 8: 11, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32577235

RESUMEN

BACKGROUND: Metabolic reprograming, non-mutational epigenetic changes, increased cell plasticity, and multidrug tolerance are early hallmarks of therapy resistance in cancer. In this temporary, therapy-tolerant state, cancer cells are highly sensitive to ferroptosis, a form of regulated cell death that is caused by oxidative stress through excess levels of iron-dependent peroxidation of polyunsaturated fatty acids (PUFA). However, mechanisms underpinning therapy-induced ferroptosis hypersensitivity remain to be elucidated. METHODS: We used quantitative single-cell imaging of fluorescent metabolic probes, transcriptomics, proteomics, and lipidomics to perform a longitudinal analysis of the adaptive response to androgen receptor-targeted therapies (androgen deprivation and enzalutamide) in prostate cancer (PCa). RESULTS: We discovered that cessation of cell proliferation and a robust reduction in bioenergetic processes were associated with multidrug tolerance and a strong accumulation of lipids. The gain in lipid biomass was fueled by enhanced lipid uptake through cargo non-selective (macropinocytosis, tunneling nanotubes) and cargo-selective mechanisms (lipid transporters), whereas de novo lipid synthesis was strongly reduced. Enzalutamide induced extensive lipid remodeling of all major phospholipid classes at the expense of storage lipids, leading to increased desaturation and acyl chain length of membrane lipids. The rise in membrane PUFA levels enhanced membrane fluidity and lipid peroxidation, causing hypersensitivity to glutathione peroxidase (GPX4) inhibition and ferroptosis. Combination treatments against AR and fatty acid desaturation, lipase activities, or growth medium supplementation with antioxidants or PUFAs altered GPX4 dependence. CONCLUSIONS: Our work provides mechanistic insight into processes of lipid metabolism that underpin the acquisition of therapy-induced GPX4 dependence and ferroptosis hypersensitivity to standard of care therapies in PCa. It demonstrates novel strategies to suppress the therapy-tolerant state that may have potential to delay and combat resistance to androgen receptor-targeted therapies, a currently unmet clinical challenge of advanced PCa. Since enhanced GPX4 dependence is an adaptive phenotype shared by several types of cancer in response to different therapies, our work might have universal implications for our understanding of metabolic events that underpin resistance to cancer therapies.

7.
Mol Oncol ; 14(1): 105-128, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31630475

RESUMEN

Kallikrein-related peptidase 14 (KLK14) is one of the several secreted KLK serine proteases involved in prostate cancer (PCa) pathogenesis. While relatively understudied, recent reports have identified KLK14 as overexpressed during PCa development. However, the modulation of KLK14 expression during PCa progression and the molecular and biological functions of this protease in the prostate tumor microenvironment remain unknown. To determine the modulation of KLK14 expression during PCa progression, we analyzed the expression levels of KLK14 in patient samples using publicly available databases and immunohistochemistry. In order to delineate the molecular mechanisms involving KLK14 in PCa progression, we integrated proteomic, transcriptomic, and in vitro assays with the goal to identify substrates, related-signaling pathways, and functional roles of this protease. We showed that KLK14 expression is elevated in advanced PCa, and particularly in metastasis. Additionally, KLK14 levels were found to be decreased in PCa tissues from patients responsive to neoadjuvant therapy compared to untreated patients. Furthermore, we also identified that KLK14 expression reoccurred in patients who developed castrate-resistant PCa. The combination of proteomic and transcriptomic analysis as well as functional assays revealed several new KLK14 substrates (agrin, desmoglein 2, vitronectin, laminins) and KLK14-regulated genes (Interleukin 32, midkine, SRY-Box 9), particularly an involvement of the mitogen-activated protein kinase 1 and interleukin 1 receptor pathways, and an involvement of KLK14 in the regulation of cellular migration, supporting its involvement in aggressive features of PCa progression. In conclusion, our work showed that KLK14 expression is associated with the development of aggressive PCa suggesting that targeting this protease could offer a novel route to limit the progression of prostate tumors. Additional work is necessary to determine the benefits and implications of targeting/cotargeting KLK14 in PCa as well as to determine the potential use of KLK14 expression as a predictor of PCa aggressiveness or response to treatment.


Asunto(s)
Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Calicreínas/metabolismo , Metástasis de la Neoplasia/genética , Neoplasias de la Próstata/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Cromatografía Líquida de Alta Presión , Bases de Datos Genéticas , Regulación hacia Abajo , Humanos , Inmunohistoquímica , Calicreínas/genética , Masculino , Terapia Neoadyuvante , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteómica , Transducción de Señal/genética , Espectrometría de Masas en Tándem , Transcriptoma , Microambiente Tumoral/genética , Regulación hacia Arriba
8.
Artículo en Inglés | MEDLINE | ID: mdl-31379747

RESUMEN

Androgen deprivation therapy (ADT) is the standard treatment for advanced prostate cancer (PCa), yet many patients relapse with lethal metastatic disease. With this loss of androgens, increased cell plasticity has been observed as an adaptive response to ADT. This includes gain of invasive and migratory capabilities, which may contribute to PCa metastasis. Hyperinsulinemia, which develops as a side-effect of ADT, has been associated with increased tumor aggressiveness and faster treatment failure. We investigated the direct effects of insulin in PCa cells that may contribute to this progression. We measured cell migration and invasion induced by insulin using wound healing and transwell assays in a range of PCa cell lines of variable androgen dependency (LNCaP, 22RV1, DuCaP, and DU145 cell lines). To determine the molecular events driving insulin-induced invasion we used transcriptomics, quantitative real time-PCR, and immunoblotting in three PCa cell lines. Insulin increased invasiveness of PCa cells, upregulating Forkhead Box Protein C2 (FOXC2), and activating key PCa cell plasticity mechanisms including gene changes consistent with epithelial-to-mesenchymal transition (EMT) and a neuroendocrine phenotype. Additionally, analysis of publicly available clinical PCa tumor data showed metastatic prostate tumors demonstrate a positive correlation between insulin receptor expression and the EMT transcription factor FOXC2. The insulin receptor is not suitable to target clinically however, our data shows that actions of insulin in PCa cells may be suppressed by inhibiting downstream signaling molecules, PI3K and ERK1/2. This study identifies for the first time, a mechanism for insulin-driven cancer cell motility and supports the concept that targeting insulin signaling at the level of the PCa tumor may extend the therapeutic efficacy of ADT.

9.
Mol Cancer Res ; 17(5): 1166-1179, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30808729

RESUMEN

De novo lipogenesis is a well-described androgen receptor (AR)-regulated metabolic pathway that supports prostate cancer tumor growth by providing fuel, membrane material, and steroid hormone precursor. In contrast, our current understanding of lipid supply from uptake of exogenous lipids and its regulation by AR is limited, and exogenous lipids may play a much more significant role in prostate cancer and disease progression than previously thought. By applying advanced automated quantitative fluorescence microscopy, we provide the most comprehensive functional analysis of lipid uptake in cancer cells to date and demonstrate that treatment of AR-positive prostate cancer cell lines with androgens results in significantly increased cellular uptake of fatty acids, cholesterol, and low-density lipoprotein particles. Consistent with a direct, regulatory role of AR in this process, androgen-enhanced lipid uptake can be blocked by the AR-antagonist enzalutamide, but is independent of proliferation and cell-cycle progression. This work for the first time comprehensively delineates the lipid transporter landscape in prostate cancer cell lines and patient samples by analysis of transcriptomics and proteomics data, including the plasma membrane proteome. We show that androgen exposure or deprivation regulates the expression of multiple lipid transporters in prostate cancer cell lines and tumor xenografts and that mRNA and protein expression of lipid transporters is enhanced in bone metastatic disease when compared with primary, localized prostate cancer. Our findings provide a strong rationale to investigate lipid uptake as a therapeutic cotarget in the fight against advanced prostate cancer in combination with inhibitors of lipogenesis to delay disease progression and metastasis. IMPLICATIONS: Prostate cancer exhibits metabolic plasticity in acquiring lipids from uptake and lipogenesis at different disease stages, indicating potential therapeutic benefit by cotargeting lipid supply.


Asunto(s)
Andrógenos/farmacología , Neoplasias Óseas/metabolismo , Neoplasias Óseas/secundario , Metabolismo de los Lípidos/efectos de los fármacos , Neoplasias de la Próstata/metabolismo , Neoplasias Óseas/genética , Línea Celular Tumoral , Colesterol/metabolismo , Progresión de la Enfermedad , Ácidos Grasos/metabolismo , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Lipoproteínas LDL/metabolismo , Masculino , Microscopía Fluorescente , Neoplasias de la Próstata/genética , Receptores Androgénicos/metabolismo , Transducción de Señal
10.
Oncogene ; 38(13): 2436, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30510231

RESUMEN

Following the publication of the above article, the authors noted an error in Figure 4, panel B. The colours of the localized and mCRPC samples were accidentally switched. The authors have corrected the colour scheme and added a key to the figure. They have also updated the colour scheme of panel C, both bars are now red instead of one red and one blue. The authors wish to apologize for any inconvenience caused.

11.
Oncogene ; 38(7): 913-934, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30194451

RESUMEN

The propensity of cancer cells to transition between epithelial and mesenchymal phenotypic states via the epithelial-mesenchymal transition (EMT) program can regulate metastatic processes, cancer progression, and treatment resistance. Transcriptional investigations using reversible models of EMT, revealed the mesenchymal-to-epithelial reverting transition (MErT) to be enriched in clinical samples of metastatic castrate resistant prostate cancer (mCRPC). From this enrichment, a metastasis-derived gene signature was identified that predicted more rapid cancer relapse and reduced survival across multiple human carcinoma types. Additionally, the transcriptional profile of MErT is not a simple mirror image of EMT as tumour cells retain a transcriptional "memory" following a reversible EMT. This memory was also enriched in mCRPC samples. Cumulatively, our studies reveal the transcriptional profile of epithelial-mesenchymal plasticity and highlight the unique transcriptional properties of MErT. Furthermore, our findings provide evidence to support the association of epithelial plasticity with poor clinical outcomes in multiple human carcinoma types.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/mortalidad , Línea Celular Tumoral , Supervivencia sin Enfermedad , Humanos , Masculino , Metástasis de la Neoplasia , Neoplasias de la Próstata Resistentes a la Castración/clasificación , Neoplasias de la Próstata Resistentes a la Castración/patología , Tasa de Supervivencia
12.
Mol Cell Endocrinol ; 478: 84-96, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30053582

RESUMEN

Mammalian sex determination hinges on sexually dimorphic transcriptional programs in developing fetal gonads. A comprehensive view of these programs is crucial for understanding the normal development of fetal testes and ovaries and the etiology of human disorders of sex development (DSDs), many of which remain unexplained. Using strand-specific RNA-sequencing, we characterized the mouse fetal gonadal transcriptome from 10.5 to 13.5 days post coitum, a key time window in sex determination and gonad development. Our dataset benefits from a greater sensitivity, accuracy and dynamic range compared to microarray studies, allows global dynamics and sex-specificity of gene expression to be assessed, and provides a window to non-transcriptional events such as alternative splicing. Spliceomic analysis uncovered female-specific regulation of Lef1 splicing, which may contribute to the enhanced WNT signaling activity in XX gonads. We provide a user-friendly visualization tool for the complete transcriptomic and spliceomic dataset as a resource for the field.


Asunto(s)
Empalme Alternativo/genética , Perfilación de la Expresión Génica , ARN Mensajero/genética , Procesos de Determinación del Sexo/genética , Animales , Femenino , Feto/metabolismo , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Gónadas/embriología , Gónadas/metabolismo , Factor de Unión 1 al Potenciador Linfoide/genética , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Masculino , Ratones , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Caracteres Sexuales , Factores de Tiempo , Activación Transcripcional/genética
13.
Cell Cycle ; 17(5): 652-668, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28749250

RESUMEN

We report for the first time the mechanism of action of the natural product thalicthuberine (TH) in prostate and cervical cancer cells. TH induced a strong accumulation of LNCaP cells in mitosis, severe mitotic spindle defects, and asymmetric cell divisions, ultimately leading to mitotic catastrophe accompanied by cell death through apoptosis. However, unlike microtubule-binding drugs (vinblastine and paclitaxel), TH did not directly inhibit tubulin polymerization when tested in a cell-free system, whereas it reduced cellular microtubule polymer mass in LNCaP cells. This suggests that TH indirectly targets microtubule dynamics through inhibition of a critical regulator or tubulin-associated protein. Furthermore, TH is not a major substrate for P-glycoprotein (Pgp), which is responsible for multidrug resistance in numerous cancers, providing a rationale to further study TH in cancers with Pgp-mediated treatment resistance. The identification of TH's molecular target in future studies will be of great value to the development of TH as potential treatment of multidrug-resistant tumors.


Asunto(s)
Alcaloides/farmacología , Antimitóticos/farmacología , Apoptosis/efectos de los fármacos , Fenantrenos/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Aurora Quinasa A/antagonistas & inhibidores , Aurora Quinasa A/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Microtúbulos/metabolismo , Mitosis/efectos de los fármacos , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Huso Acromático/efectos de los fármacos , Huso Acromático/fisiología , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
14.
Sci Rep ; 7(1): 16862, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29203868

RESUMEN

Short tandem repeats (STRs) are repetitive sequences of a polymorphic stretch of two to six nucleotides. We hypothesized that STRs are associated with prostate cancer development and/or progression. We undertook RNA sequencing analysis of prostate tumors and adjacent non-malignant cells to identify polymorphic STRs that are readily expressed in these cells. Most of the expressed STRs in the clinical samples mapped to intronic and intergenic DNA. Our analysis indicated that three of these STRs (TAAA-ACTG2, TTTTG-TRIB1, and TG-PCA3) are polymorphic and differentially expressed in prostate tumors compared to adjacent non-malignant cells. TG-PCA3 STR expression was repressed by the anti-androgen drug enzalutamide in prostate cancer cells. Genetic analysis of prostate cancer patients and healthy controls (N > 2,000) showed a significant association of the most common 11 repeat allele of TG-PCA3 STR with prostate cancer risk (OR = 1.49; 95% CI 1.11-1.99; P = 0.008). A significant association was also observed with aggressive disease (OR = 2.00; 95% CI 1.06-3.76; P = 0.031) and high mortality rates (HR = 3.0; 95% CI 1.03-8.77; P = 0.045). We propose that TG-PCA3 STR has both diagnostic and prognostic potential for prostate cancer. We provided a proof of concept to be applied to other RNA sequencing datasets to identify disease-associated STRs for future clinical exploratory studies.


Asunto(s)
Antígenos de Neoplasias/genética , Repeticiones de Microsatélite/genética , Neoplasias de la Próstata/patología , ARN Largo no Codificante/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Secuencia de Bases , Estudios de Casos y Controles , Genotipo , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Pronóstico , Modelos de Riesgos Proporcionales , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/mortalidad , Factores de Riesgo
15.
Oncotarget ; 8(12): 18949-18967, 2017 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-28145883

RESUMEN

Treatment-induced neuroendocrine transdifferentiation (NEtD) complicates therapies for metastatic prostate cancer (PCa). Based on evidence that PCa cells can transdifferentiate to other neuroectodermally-derived cell lineages in vitro, we proposed that NEtD requires first an intermediary reprogramming to metastable cancer stem-like cells (CSCs) of a neural class and we demonstrate that several different AR+/PSA+ PCa cell lines were efficiently reprogrammed to, maintained and propagated as CSCs by growth in androgen-free neural/neural crest (N/NC) stem medium. Such reprogrammed cells lost features of prostate differentiation; gained features of N/NC stem cells and tumor-initiating potential; were resistant to androgen signaling inhibition; and acquired an invasive phenotype in vitro and in vivo. When placed back into serum-containing mediums, reprogrammed cells could be re-differentiated to N-/NC-derived cell lineages or return back to an AR+ prostate-like state. Once returned, the AR+ cells were resistant to androgen signaling inhibition. Acute androgen deprivation or anti-androgen treatment in serum-containing medium led to the transient appearance of a sub-population of cells with similar characteristics. Finally, a 132 gene signature derived from reprogrammed PCa cell lines distinguished tumors from PCa patients with adverse outcomes. This model may explain neural manifestations of PCa associated with lethal disease. The metastable nature of the reprogrammed stem-like PCa cells suggests that cycles of PCa cell reprogramming followed by re-differentiation may support disease progression and therapeutic resistance. The ability of a gene signature from reprogrammed PCa cells to identify tumors from patients with metastasis or PCa-specific mortality implies that developmental reprogramming is linked to aggressive tumor behaviors.


Asunto(s)
Transdiferenciación Celular/fisiología , Reprogramación Celular/fisiología , Resistencia a Antineoplásicos/fisiología , Células Madre Neoplásicas/patología , Neoplasias de la Próstata/patología , Animales , Western Blotting , Progresión de la Enfermedad , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Xenoinjertos , Humanos , Masculino , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa , Pez Cebra
16.
Mol Cancer Ther ; 16(1): 3-15, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27760837

RESUMEN

The lack of a cure for metastatic castrate-resistant prostate cancer (mCRPC) highlights the urgent need for more efficient drugs to fight this disease. Here, we report the mechanism of action of the natural product 6α-acetoxyanopterine (6-AA) in prostate cancer cells. At low nanomolar doses, this potent cytotoxic alkaloid from the Australian endemic tree Anopterus macleayanus induced a strong accumulation of LNCaP and PC-3 (prostate cancer) cells as well as HeLa (cervical cancer) cells in mitosis, severe mitotic spindle defects, and asymmetric cell divisions, ultimately leading to mitotic catastrophe accompanied by cell death through apoptosis. DNA microarray of 6-AA-treated LNCaP cells combined with pathway analysis identified very similar transcriptional changes when compared with the anticancer drug vinblastine, which included pathways involved in mitosis, microtubule spindle organization, and microtubule binding. Like vinblastine, 6-AA inhibited microtubule polymerization in a cell-free system and reduced cellular microtubule polymer mass. Yet, microtubule alterations that are associated with resistance to microtubule-destabilizing drugs like vinca alkaloids (vinblastine/vincristine) or 2-methoxyestradiol did not confer resistance to 6-AA, suggesting a different mechanism of microtubule interaction. 6-AA is a first-in-class microtubule inhibitor that features the unique anopterine scaffold. This study provides a strong rationale to further develop this novel structure class of microtubule inhibitor for the treatment of malignant disease. Mol Cancer Ther; 16(1); 3-15. ©2016 AACR.


Asunto(s)
Antimitóticos/farmacología , Antineoplásicos/farmacología , Productos Biológicos/farmacología , Microtúbulos/metabolismo , Mitosis/efectos de los fármacos , Moduladores de Tubulina/farmacología , Antimitóticos/química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Productos Biológicos/química , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Perfilación de la Expresión Génica , Humanos , Masculino , Mitosis/genética , Neoplasias de la Próstata/metabolismo , Multimerización de Proteína/efectos de los fármacos , Huso Acromático/efectos de los fármacos , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Vinblastina/farmacología
18.
Mol Cell Endocrinol ; 420: 159-68, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26499396

RESUMEN

Simultaneous expression of highly homologous RLN1 and RLN2 genes in prostate impairs their accurate delineation. We used PacBio SMRT sequencing and RNA-Seq in LNCaP cells in order to dissect the expression of RLN1 and RLN2 variants. We identified a novel fusion transcript comprising the RLN1 and RLN2 genes and found evidence of its expression in the normal and prostate cancer tissues. The RLN1-RLN2 fusion putatively encodes RLN2 isoform with the deleted secretory signal peptide. The identification of the fusion transcript provided information to determine unique RLN1-RLN2 fusion and RLN1 regions. The RLN1-RLN2 fusion was co-expressed with RLN1 in LNCaP cells, but the two gene products were inversely regulated by androgens. We showed that RLN1 is underrepresented in common PCa cell lines in comparison to normal and PCa tissue. The current study brings a highly relevant update to the relaxin field, and will encourage further studies of RLN1 and RLN2 in PCa and broader.


Asunto(s)
Proteínas de Fusión Oncogénica/genética , Neoplasias de la Próstata/genética , Relaxina/genética , Andrógenos/farmacología , Línea Celular Tumoral , Exones/genética , Humanos , Masculino , Proteínas de Fusión Oncogénica/metabolismo , Sistemas de Lectura Abierta/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Relaxina/metabolismo , Análisis de Secuencia de ARN
19.
BMC Genomics ; 16: 1021, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26626734

RESUMEN

BACKGROUND: Fusion transcripts are found in many tissues and have the potential to create novel functional products. Here, we investigate the genomic sequences around fusion junctions to better understand the transcriptional mechanisms mediating fusion transcription/splicing. We analyzed data from prostate (cancer) cells as previous studies have shown extensively that these cells readily undergo fusion transcription. RESULTS: We used the FusionMap program to identify high-confidence fusion transcripts from RNAseq data. The RNAseq datasets were from our (N = 8) and other (N = 14) clinical prostate tumors with adjacent non-cancer cells, and from the LNCaP prostate cancer cell line that were mock-, androgen- (DHT), and anti-androgen- (bicalutamide, enzalutamide) treated. In total, 185 fusion transcripts were identified from all RNAseq datasets. The majority (76%) of these fusion transcripts were 'read-through chimeras' derived from adjacent genes in the genome. Characterization of sequences at fusion loci were carried out using a combination of the FusionMap program, custom Perl scripts, and the RNAfold program. Our computational analysis indicated that most fusion junctions (76%) use the consensus GT-AG intron donor-acceptor splice site, and most fusion transcripts (85%) maintained the open reading frame. We assessed whether parental genes of fusion transcripts have the potential to form complementary base pairing between parental genes which might bring them into physical proximity. Our computational analysis of sequences flanking fusion junctions at parental loci indicate that these loci have a similar propensity as non-fusion loci to hybridize. The abundance of repetitive sequences at fusion and non-fusion loci was also investigated given that SINE repeats are involved in aberrant gene transcription. We found few instances of repetitive sequences at both fusion and non-fusion junctions. Finally, RT-qPCR was performed on RNA from both clinical prostate tumors and adjacent non-cancer cells (N = 7), and LNCaP cells treated as above to validate the expression of seven fusion transcripts and their respective parental genes. We reveal that fusion transcript expression is similar to the expression of parental genes. CONCLUSIONS: Fusion transcripts maintain the open reading frame, and likely use the same transcriptional machinery as non-fusion transcripts as they share many genomic features at splice/fusion junctions.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/genética , Sitios de Carácter Cuantitativo , Empalme del ARN , Transcripción Genética , Andrógenos/farmacología , Antineoplásicos Hormonales/farmacología , Biología Computacional/métodos , Secuencia Conservada , Conjuntos de Datos como Asunto , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Motivos de Nucleótidos , Sitios de Empalme de ARN , Secuencias Repetitivas de Ácidos Nucleicos
20.
BMC Genomics ; 16: 145, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25766521

RESUMEN

BACKGROUND: Strand specific RNAseq data is now more common in RNAseq projects. Visualizing RNAseq data has become an important matter in Analysis of sequencing data. The most widely used visualization tool is the UCSC genome browser that introduced the custom track concept that enabled researchers to simultaneously visualize gene expression at a particular locus from multiple experiments. Our objective of the software tool is to provide friendly interface for visualization of RNAseq datasets. RESULTS: This paper introduces a visualization tool (RNASeqBrowser) that incorporates and extends the functionality of the UCSC genome browser. For example, RNASeqBrowser simultaneously displays read coverage, SNPs, InDels and raw read tracks with other BED and wiggle tracks -- all being dynamically built from the BAM file. Paired reads are also connected in the browser to enable easier identification of novel exon/intron borders and chimaeric transcripts. Strand specific RNAseq data is also supported by RNASeqBrowser that displays reads above (positive strand transcript) or below (negative strand transcripts) a central line. Finally, RNASeqBrowser was designed for ease of use for users with few bioinformatic skills, and incorporates the features of many genome browsers into one platform. CONCLUSIONS: The features of RNASeqBrowser: (1) RNASeqBrowser integrates UCSC genome browser and NGS visualization tools such as IGV. It extends the functionality of the UCSC genome browser by adding several new types of tracks to show NGS data such as individual raw reads, SNPs and InDels. (2) RNASeqBrowser can dynamically generate RNA secondary structure. It is useful for identifying non-coding RNA such as miRNA. (3) Overlaying NGS wiggle data is helpful in displaying differential expression and is simple to implement in RNASeqBrowser. (4) NGS data accumulates a lot of raw reads. Thus, RNASeqBrowser collapses exact duplicate reads to reduce visualization space. Normal PC's can show many windows of NGS individual raw reads without much delay. (5) Multiple popup windows of individual raw reads provide users with more viewing space. This avoids existing approaches (such as IGV) which squeeze all raw reads into one window. This will be helpful for visualizing multiple datasets simultaneously. RNASeqBrowser and its manual are freely available at http://www.australianprostatecentre.org/research/software/rnaseqbrowser or http://sourceforge.net/projects/rnaseqbrowser/.


Asunto(s)
Bases de Datos Genéticas , Genoma , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Biología Computacional/métodos , Mutación INDEL/genética , Internet
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...