Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
N Biotechnol ; 77: 139-148, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37673373

RESUMEN

We describe the development and characterization of the (to date) smallest Natural Killer (NK) cell re-directing human B Cell Maturation Antigen (hBCMA) x CD16 dual engagers for potential treatment of multiple myeloma, based on combinations of small 58 amino acid, non-immunoglobulin, affibody affinity proteins. Affibody molecules to human CD16a were selected from a combinatorial library by phage display resulting in the identification of three unique binders with affinities (KD) for CD16a in the range of 100 nM-3 µM. The affibody exhibiting the highest affinity demonstrated insensitivity towards the CD16a allotype (158F/V) and did not interfere with IgG (Fc) binding to CD16a. For the construction of hBCMA x CD16 dual engagers, different CD16a binding arms, including bi-paratopic affibody combinations, were genetically fused to a high-affinity hBCMA-specific affibody. Such 15-23 kDa dual engager constructs showed simultaneous hBCMA and CD16a binding ability and could efficiently activate resting primary NK cells and trigger specific lysis of a panel of hBCMA-positive multiple myeloma cell lines. Hence, we report a novel class of uniquely small NK cell engagers with specific binding properties and potent functional profiles.

2.
Biochem Biophys Res Commun ; 656: 122-130, 2023 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-37032581

RESUMEN

Despite decades of development of treatments and the successful application of targeted therapies for multiple myeloma, clinical challenges remain for patients with relapsed/refractory disease. A drug designed for efficient delivery of an alkylating payload into tumor cells that yields a favorable therapeutic window can be an attractive choice. Herein we describe melphalan flufenamide (melflufen), a drug with a peptide carrier component conjugated to an alkylating payload, and its cellular metabolism. We further underline the fundamental role of enzymatic hydrolysis in the rapid and robust accumulation of alkylating metabolites in cancer cells and their importance for downstream effects. The formed alkylating metabolites were shown to cause DNA damage, both on purified DNA and on chromatin in cells, with both nuclear and mitochondrial DNA affected in the latter. Furthermore, the rapid intracellular enrichment of alkylating metabolites is shown to be essential for the rapid kinetics of the downstream intracellular effects such as DNA damage signaling and induction of apoptosis. To evaluate the importance of enzymatic hydrolysis for melflufen's efficacy, all four stereoisomers of the compound were studied in a systematic approach and shown to have a different pattern of metabolism. In comparison with melflufen, stereoisomers lacking intracellular accumulation of alkylating payloads showed cytotoxic activity only at significantly higher concentration, slower DNA damage kinetics, and different mechanisms of action to reach cellular apoptosis.


Asunto(s)
Melfalán , Mieloma Múltiple , Humanos , Melfalán/efectos adversos , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Fenilalanina/farmacología
3.
Curr Cancer Drug Targets ; 23(1): 25-46, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35747970

RESUMEN

Aminopeptidases, which catalyze the cleavage of amino acids from the amino terminus of proteins, are widely distributed in the natural world and play a crucial role in cellular processes and functions, including metabolism, signaling, angiogenesis, and immunology. They are also involved in the homeostasis of amino acids and proteins that are required for cellular proliferation. Tumor cells are highly dependent on the exogenous supply of amino acids for their survival, and overexpression of aminopeptidase facilitates rapid tumor cell proliferation. In addition, clinical studies have demonstrated that patients with cancers with high aminopeptidase expression often have poorer outcomes. Emerging evidence supports the rationale of inhibiting aminopeptidase activity as a targeted approach for novel treatment options, as limiting the availability of amino acids can be selectively lethal to tumor cells. While there are agents that directly target aminopeptidases that demonstrate potential as cancer therapies, such as bestatin and tosedostat, more selective and more targeted therapeutic approaches are needed. This article specifically looks at the biological role of aminopeptidases in both normal and cancer processes, and their potential as a biological target for future therapeutic strategies. When examining previous publications, most do not cover aminopeptidases and their role in cancer processes. Aminopeptidases play a vital role in cell processes and functions; however, their overexpression may lead to a rapid proliferation of tumor cells. Emerging evidence supports the rationale of leveraging aminopeptidase activity as a targeted approach for new oncological treatments. This article specifically looks at the biological role of aminopeptidases in both normal and cancer processes, and their potential as a biological target for future therapeutic strategies.


Asunto(s)
Aminopeptidasas , Neoplasias , Humanos , Aminopeptidasas/química , Aminopeptidasas/metabolismo , Aminoácidos/metabolismo , Aminoácidos/farmacología , Neoplasias/tratamiento farmacológico , Leucina/farmacología , Transducción de Señal , Biología
4.
J Am Soc Mass Spectrom ; 33(7): 1161-1167, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35704800

RESUMEN

The addition of supercharging (SC) reagents in electrospray ionization coupled mass spectrometry (ESI-MS) has demonstrated several advantages for protein analysis such as reduced required mass range of the instrument, narrowed charge-state distribution, increased sensitivity, and adduct suppression. The potential use of SC reagents to improve analyses of larger and complex protein molecules such as monoclonal antibodies and antibody-drug conjugates (ADCs) has not been previously reported. In this study, the effect of seven SC reagents (meta-nitrobenzyl alcohol (m-NBA), dimethyl sulfoxide (DMSO), ortho-nitroanisole (o-NA), propane sultone (PS), ethylene carbonate (EC), propylene carbonate (PC), and sulfolane) on ESI-MS acquired spectra of deglycosylated, intact, and reduced trastuzumab and a vcMMAE-trastuzumab ADC was investigated under denaturing conditions. The addition of any of the SC reagents resulted in a higher average charge state observed for all tested reagents for both trastuzumab and the ADC and a narrower charge-state envelope for o-NA and 1% sulfolane for trastuzumab. However, improved peak shapes or increased sensitivity was observed for several reagents, overall increasing the spectra quality. Finally, it was shown that SC reagents can be safely used for ADC analysis without impacting the obtained drug-to-antibody (DAR) values, as all DAR values were within 0.1 from the control sample.


Asunto(s)
Inmunoconjugados , Anticuerpos Monoclonales , Indicadores y Reactivos , Espectrometría de Masa por Ionización de Electrospray/métodos , Trastuzumab
5.
Cells ; 11(9)2022 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-35563880

RESUMEN

Mesenchymal stem/stromal cells (MSCs) are self-renewing and multipotent progenitors, which constitute the main cellular compartment of the bone marrow stroma. Because MSCs have an important role in the pathogenesis of multiple myeloma, it is essential to know if novel drugs target MSCs. Melflufen is a novel anticancer peptide-drug conjugate compound for patients with relapsed refractory multiple myeloma. Here, we studied the cytotoxicity of melflufen, melphalan and doxorubicin in healthy human bone marrow-derived MSCs (BMSCs) and how these drugs affect BMSC proliferation. We established co-cultures of BMSCs with MM.1S myeloma cells to see if BMSCs increase or decrease the cytotoxicity of melflufen, melphalan, bortezomib and doxorubicin. We evaluated how the drugs affect BMSC differentiation into adipocytes and osteoblasts and the BMSC-supported formation of vascular networks. Our results showed that BMSCs were more sensitive to melflufen than to melphalan. The cytotoxicity of melflufen in myeloma cells was not affected by the co-culture with BMSCs, as was the case for melphalan, bortezomib and doxorubicin. Adipogenesis, osteogenesis and BMSC-mediated angiogenesis were all affected by melflufen. Melphalan and doxorubicin affected BMSC differentiation in similar ways. The effects on adipogenesis and osteogenesis were not solely because of effects on proliferation, seen from the differential expression of differentiation markers normalized by cell number. Overall, our results indicate that melflufen has a significant impact on BMSCs, which could possibly affect therapy outcome.


Asunto(s)
Células Madre Mesenquimatosas , Mieloma Múltiple , Médula Ósea/patología , Bortezomib/uso terapéutico , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Humanos , Melfalán/análogos & derivados , Melfalán/farmacología , Melfalán/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Fenilalanina/análogos & derivados
6.
Hemasphere ; 6(3): e687, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35243210

RESUMEN

Immunoglobulin light-chain (AL) amyloidosis is a rare disease caused by clonal plasma cell secretion of misfolded light chains that assemble as toxic amyloid fibrils, depositing in vital organs including the heart and kidneys, causing organ dysfunction. Plasma cell-directed therapeutics are expected to reduce production of toxic light chain by eliminating amyloidogenic cells in bone marrow, thereby diminishing amyloid fibril deposition and providing the potential for organ recovery. Melphalan flufenamide (melflufen) is a first-in-class peptide-drug conjugate that targets aminopeptidases and rapidly releases alkylating agents inside tumor cells. Melflufen is highly lipophilic, permitting rapid uptake by cells, where it is enzymatically hydrolyzed by aminopeptidases, resulting in intracellular accumulation of the alkylating agents, including melphalan. Previous data demonstrating sensitivity of myeloma cells to melflufen suggest that the drug might be useful in AL amyloidosis. We describe the effects of melflufen on amyloidogenic plasma cells in vitro and ex vivo, demonstrating enhanced cytotoxic effects in comparison to melphalan, as well as novel mechanisms of action through the unfolded protein response (UPR) pathway. These findings provide evidence that melflufen-mediated cytotoxicity extends to amyloidogenic plasma cells, and support the rationale for the evaluation of melflufen in patients with AL amyloidosis.

7.
Org Biomol Chem ; 19(47): 10417-10423, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34817496

RESUMEN

Herein we disclose the transformation of maleimides into water-soluble tris(2-carboxyethyl)phosphonium ylides and their subsequent application in the bioconjugation of protein- and peptide-linked aldehydes. The new entry into Wittig bioconjugate chemistry proceeds under mild conditions and relies on highly water soluble reagents, which are likely already part of most biochemists' inventory.


Asunto(s)
Maleimidas
8.
Molecules ; 26(19)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34641586

RESUMEN

We review drug conjugates combining a tumor-selective moiety with a cytotoxic agent as cancer treatments. Currently, antibody-drug conjugates (ADCs) are the most common drug conjugates used clinically as cancer treatments. While providing both efficacy and favorable tolerability, ADCs have limitations due to their size and complexity. Peptides as tumor-targeting carriers in peptide-drug conjugates (PDCs) offer a number of benefits. Melphalan flufenamide (melflufen) is a highly lipophilic PDC that takes a novel approach by utilizing increased aminopeptidase activity to selectively increase the release and concentration of cytotoxic alkylating agents inside tumor cells. The only other PDC approved currently for clinical use is 177Lu-dotatate, a targeted form of radiotherapy combining a somatostatin analog with a radionuclide. It is approved as a treatment for gastroenteropancreatic neuroendocrine tumors. Results with other PDCs combining synthetic analogs of natural peptide ligands with cytotoxic agents have been mixed. The field of drug conjugates as drug delivery systems for the treatment of cancer continues to advance with the application of new technologies. Melflufen provides a paradigm for rational PDC design, with a targeted mechanism of action and the potential for deepening responses to treatment, maintaining remissions, and eradicating therapy-resistant stem cells.


Asunto(s)
Antineoplásicos/uso terapéutico , Citotoxinas/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Inmunoconjugados/uso terapéutico , Neoplasias/terapia , Péptidos/uso terapéutico , Radioterapia/métodos , Portadores de Fármacos/química , Diseño de Fármacos , Humanos , Melfalán/análogos & derivados , Melfalán/uso terapéutico , Péptidos/química , Preparaciones Farmacéuticas/química , Fenilalanina/análogos & derivados , Fenilalanina/uso terapéutico , Somatostatina/uso terapéutico
9.
Bone Rep ; 15: 101098, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34150958

RESUMEN

Myeloma bone disease is a major complication in multiple myeloma affecting quality of life and survival. It is characterized by increased activity of osteoclasts, bone resorbing cells. Myeloma microenvironment promotes excessive osteoclastogenesis, a process of production of osteoclasts from their precursors, monocytes. The effects of two anti-myeloma drugs, melphalan flufenamide (melflufen) and melphalan, on the activity and proliferation of osteoclasts and their progenitors, monocytes, were assessed in this study. In line with previous research, differentiation of monocytes was associated with increased expression of genes encoding DNA damage repair proteins. Hence monocytes were more sensitive to DNA damage-causing alkylating agents than their differentiated progeny, osteoclasts. In addition, differentiated progeny of monocytes showed increased gene expression of immune checkpoint ligands which may potentially create an immunosuppressive microenvironment. Melflufen was ten-fold more active than melphalan in inhibiting proliferation of osteoclast progenitors. Furthermore, melflufen was also superior to melphalan in inhibition of osteoclastogenesis and bone resorption. These results demonstrate that melflufen may exert beneficial effects in patients with multiple myeloma such as reducing bone resorption and immunosuppressive milieu by inhibiting osteoclastogenesis.

10.
Hemasphere ; 5(7): e602, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34136753

RESUMEN

Introduction of the proteasome inhibitor bortezomib has dramatically improved clinical outcomes in multiple myeloma. However, most patients become refractory to bortezomib-based therapies. On the molecular level, development of resistance to bortezomib in myeloma cells is accompanied by complex metabolic changes resulting in increased protein folding capacity, and less dependency on the proteasome. In this study, we show that aminopeptidase B, encoded by the RNPEP gene, is upregulated in bortezomib-resistant myeloma cell lines, and in a murine in vivo model. Moreover, increased RNPEP expression is associated with shorter survival in multiple myeloma patients previously treated with bortezomib-containing regimens. Additionally, expression is increased in plasma cell precursors, a B-lymphoid compartment previously associated with myeloma stem cells. We hypothesized that increased aminopeptidase B expression in aggressive myeloma clones may be used therapeutically toward elimination of the cells via the use of a novel peptide-drug conjugate, melphalan flufenamide (melflufen). Melflufen, a substrate of aminopeptidase B, efficiently eliminates bortezomib-resistant myeloma cells in vitro and in vivo, and completely suppresses clonogenic myeloma growth in vitro at subphysiological concentrations. Thus, melflufen represents a novel treatment option that is able to eradicate drug-resistant myeloma clones characterized by elevated aminopeptidase B expression.

11.
Cancers (Basel) ; 13(7)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810334

RESUMEN

Multiple myeloma (MM) is characterized by extensive immunoglobulin production leading to an excessive load on protein homeostasis in tumor cells. Aminopeptidases contribute to proteolysis by catalyzing the hydrolysis of amino acids from proteins or peptides and function downstream of the ubiquitin-proteasome pathway. Notably, aminopeptidases can be utilized in the delivery of antibody and peptide-conjugated drugs, such as melflufen, currently in clinical trials. We analyzed the expression of 39 aminopeptidase genes in MM samples from 122 patients treated at Finnish cancer centers and 892 patients from the CoMMpass database. Based on ranked abundance, LAP3, ERAP2, METAP2, TTP2, and DPP7 were highly expressed in MM. ERAP2, XPNPEP1, DPP3, RNPEP, and CTSV were differentially expressed between relapsed/refractory and newly diagnosed MM samples (p < 0.05). Sensitivity to melflufen was detected ex vivo in 11/15 MM patient samples, and high sensitivity was observed, especially in relapsed/refractory samples. Survival analysis revealed that high expression of XPNPEP1, RNPEP, DPP3, and BLMH (p < 0.05) was associated with shorter overall survival. Hydrolysis analysis demonstrated that melflufen is a substrate for aminopeptidases LAP3, LTA4H, RNPEP, and ANPEP. The sensitivity of MM cell lines to melflufen was reduced by aminopeptidase inhibitors. These results indicate critical roles of aminopeptidases in disease progression and the activity of melflufen in MM.

12.
Br J Cancer ; 124(8): 1428-1436, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33531688

RESUMEN

BACKGROUND: Esterase enzymes differ in substrate specificity and biological function and may display dysregulated expression in cancer. This study evaluated the biological significance of esterase expression in multiple myeloma (MM). METHODS: For gene expression profiling and evaluation of genomic variants in the Institute for Molecular Medicine Finland (FIMM) cohort, bone marrow aspirates were obtained from patients with newly diagnosed MM (NDMM) or relapsed/refractory MM (RRMM). CD138+ plasma cells were enriched and used for RNA sequencing and analysis, and to evaluate genomic variation. The Multiple Myeloma Research Foundation (MMRF) Relating Clinical Outcomes in MM to Personal Assessment of Genetic Profile (CoMMpass) dataset was used for validation of the findings from FIMM. RESULTS: MM patients (NDMM, n = 56; RRMM, n = 78) provided 171 bone marrow aspirates (NDMM, n = 56; RRMM, n = 115). Specific esterases exhibited relatively high or low expression in MM, and expression of specific esterases (UCHL5, SIAE, ESD, PAFAH1B3, PNPLA4 and PON1) was significantly altered on progression from NDMM to RRMM. High expression of OVCA2, PAFAH1B3, SIAE and USP4, and low expression of PCED1B, were identified as poor prognostic markers (P < 0.05). The MMRF CoMMpass dataset provided validation that higher expression of PAFAH1B3 and SIAE, and lower expression of PCED1B, were associated with poor prognosis. CONCLUSIONS: Esterase gene expression levels change as patients progress from NDMM to RRMM. High expression of OVCA2, PAFAH1B3, USP4 and SIAE, and low expression of PCED1B, are poor prognostic markers in MM, suggesting a role for these esterases in myeloma biology.


Asunto(s)
Esterasas/genética , Secuenciación del Exoma/métodos , Perfilación de la Expresión Génica/métodos , Mieloma Múltiple/genética , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Finlandia , Regulación Neoplásica de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Análisis de Secuencia de ARN
14.
ChemMedChem ; 15(24): 2500-2512, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33063934

RESUMEN

Auristatins are a class of ultrapotent microtubule inhibitors, whose growing clinical popularity in oncology is based upon their use as payloads in antibody-drug conjugates (ADCs). The most widely utilized auristatin, MMAE, has however been shown to cause apoptosis in non-pathological cells proximal to the tumour ("bystander killing"). Herein, we introduce azastatins, a new class of auristatin derivatives encompassing a side chain amine for antibody conjugation. The synthesis of Cbz-azastatin methyl ester, which included the C2-elongation and diastereoselective reduction of two proteinogenic amino acids as key transformations, was accomplished in 22 steps and 0.76 % overall yield. While Cbz-protected azastatin methyl ester (0.13-3.0 nM) inhibited proliferation more potently than MMAE (0.47-6.5 nM), removal of the Cbz-group yielded dramatically increased IC50 -values (9.8-170 nM). We attribute the reduced apparent cytotoxicity of the deprotected azastatin methyl esters to a lack of membrane permeability. These results clearly establish the azastatins as a novel class of cytotoxic payloads ideally suited for use in next-generation ADC development.


Asunto(s)
Antineoplásicos/farmacología , Oligopéptidos/farmacología , Moduladores de Tubulina/farmacología , Antineoplásicos/síntesis química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Oligopéptidos/síntesis química , Moduladores de Tubulina/síntesis química
15.
Antibodies (Basel) ; 9(3)2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32911603

RESUMEN

Antibody-drug conjugates (ADCs) are heterogeneous biotherapeutics and differ vastly in their physicochemical properties depending on their design. The number of small drug molecules covalently attached to each antibody molecule is commonly referred to as the drug-to-antibody ratio (DAR). Established analytical protocols for mass spectrometry (MS)-investigation of antibodies and ADCs often require sample treatment such as desalting or interchain disulfide bond reduction prior to analysis. Herein, the impact of the desalting and reduction steps-as well as the sample concentration and elapsed time between synthesis and analysis of DAR-values (as acquired by reversed phase liquid chromatography MS (RPLC-MS))-was investigated. It was found that the apparent DAR-values could fluctuate by up to 0.6 DAR units due to changes in the sample preparation workflow. For methods involving disulfide reduction by means of dithiothreitol (DTT), an acidic quench is recommended in order to increase DAR reliability. Furthermore, the addition of a desalting step was shown to benefit the ionization efficiencies in RPLC-MS. Finally, in the case of delayed analyses, samples can be stored at four degrees Celsius for up to one week but are better stored at -20 °C for longer periods of time. In conclusion, the results demonstrate that commonly used sample preparation procedures and storage conditions themselves may impact MS-derived DAR-values, which should be taken into account when evaluating analytical procedures.

16.
Respir Res ; 21(1): 233, 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32912304

RESUMEN

BACKGROUND: The airway epithelium (AE) forms the first line of defence against harmful particles and pathogens. Barrier failure of the airway epithelium contributes to exacerbations of a range of lung diseases that are commonly treated with Azithromycin (AZM). In addition to its anti-bacterial function, AZM has immunomodulatory effects which are proposed to contribute to its clinical effectiveness. In vitro studies have shown the AE barrier-enhancing effects of AZM. The aim of this study was to analyze whether AE damage caused by inhalation of sulfur dioxide (SO2) in a murine model could be reduced by pre-treatment with AZM. METHODS: The leakiness of the AE barrier was evaluated after SO2 exposure by measuring levels of human serum albumin (HSA) in bronchoalveolar lavage fluid (BALF). Protein composition in BALF was also assessed and lung tissues were evaluated across treatments using histology and gene expression analysis. RESULTS: AZM pre-treatment (2 mg/kg p.o. 5 times/week for 2 weeks) resulted in reduced glutathione-S-transferases in BALF of SO2 injured mice compared to control (without AZM treatment). AZM treated mice had increased intracellular vacuolization including lamellar bodies and a reduction in epithelial shedding after injury in addition to a dampened SO2-induced inflammatory response. CONCLUSIONS: Using a mouse model of AE barrier dysfunction we provide evidence for the protective effects of AZM in vivo, possibly through stabilizing the intracellular microenvironment and reducing inflammatory responses. Our data provide insight into the mechanisms contributing to the efficacy of AZM in the treatment of airway diseases.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Antibacterianos/farmacología , Azitromicina/farmacología , Pulmón/efectos de los fármacos , Mucosa Respiratoria/efectos de los fármacos , Dióxido de Azufre/toxicidad , Animales , Líquido del Lavado Bronquioalveolar , Femenino , Exposición por Inhalación/efectos adversos , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Mucosa Respiratoria/patología , Dióxido de Azufre/administración & dosificación
17.
Ther Adv Med Oncol ; 12: 1758835920937891, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32774473

RESUMEN

BACKGROUND: Low survival rates in metastatic high-grade osteosarcoma (HGOS) have remained stagnant for the last three decades. This study aims to investigate the role of aminopeptidase N (ANPEP) in HGOS progression and its targeting with a novel lipophilic peptidase-enhanced cytotoxic compound melphalan flufenamide (melflufen) in HGOS. METHODS: Meta-analysis of publicly available gene expression datasets was performed to determine the impact of ANPEP gene expression on metastasis-free survival of HGOS patients. The efficacy of standard-of-care anti-neoplastic drugs and a lipophilic peptidase-enhanced cytotoxic conjugate melflufen was investigated in patient-derived HGOS ex vivo models and cell lines. The kinetics of apoptosis and necrosis induced by melflufen and doxorubicin were compared. Anti-neoplastic effects of melflufen were investigated in vivo. RESULTS: Elevated ANPEP expression in diagnostic biopsies of HGOS patients was found to significantly reduce metastasis-free survival. In drug sensitivity assays, melflufen has shown an anti-proliferative effect in HGOS ex vivo samples and cell lines, including those resistant to methotrexate, etoposide, doxorubicin, and PARP inhibitors. Further, HGOS cells treated with melflufen displayed a rapid induction of apoptosis and this sensitivity correlated with high expression of ANPEP. In combination treatments, melflufen demonstrated synergy with doxorubicin in killing HGOS cells. Finally, Melflufen displayed anti-tumor growth and anti-metastatic effects in vivo. CONCLUSION: This study may pave the way for use of melflufen as an adjuvant to doxorubicin in improving the therapeutic efficacy for the treatment of metastatic HGOS.

18.
Cancer Med ; 9(18): 6726-6738, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32717133

RESUMEN

Melphalan flufenamide (hereinafter referred to as "melflufen") is a peptide-conjugated drug currently in phase 3 trials for the treatment of relapsed or refractory multiple myeloma. Due to its lipophilic nature, it readily enters cells, where it is converted to the known alkylator melphalan leading to enrichment of hydrophilic alkylator payloads. Here, we have analysed in vitro and in vivo the efficacy of melflufen on normal and cancerous breast epithelial lines. D492 is a normal-derived nontumorigenic epithelial progenitor cell line whereas D492HER2 is a tumorigenic version of D492, overexpressing the HER2 oncogene. In addition we used triple negative breast cancer cell line MDA-MB231. The tumorigenic D492HER2 and MDA-MB231 cells were more sensitive than normal-derived D492 cells when treated with melflufen. Compared to the commonly used anti-cancer drug doxorubicin, melflufen was significantly more effective in reducing cell viability in vitro while it showed comparable effects in vivo. However, melflufen was more efficient in inhibiting metastasis of MDA-MB231 cells. Melflufen induced DNA damage was confirmed by the expression of the DNA damage proteins Æ´H2Ax and 53BP1. The effect of melflufen on D492HER2 was attenuated if cells were pretreated with the aminopeptidase inhibitor bestatin, which is consistent with previous reports demonstrating the importance of aminopeptidase CD13 in facilitating melflufen cleavage. Moreover, analysis of CD13high and CD13low subpopulations of D492HER2 cells and knockdown of CD13 showed that melflufen efficacy is mediated at least in part by CD13. Knockdown of LAP3 and DPP7 aminopeptidases led to similar efficacy reduction, suggesting that also other aminopeptidases may facilitate melflufen conversion. In summary, we have shown that melflufen is a highly efficient anti-neoplastic agent in breast cancer cell lines and its efficacy is facilitated by aminopeptidases.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Melfalán/análogos & derivados , Fenilalanina/análogos & derivados , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Antígenos CD13/genética , Antígenos CD13/metabolismo , Línea Celular Tumoral , Embrión de Pollo , Daño del ADN , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Humanos , Leucil Aminopeptidasa/genética , Leucil Aminopeptidasa/metabolismo , Melfalán/farmacología , Fenilalanina/farmacología , Transducción de Señal , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
19.
Anal Chem ; 92(13): 9001-9007, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32441508

RESUMEN

Characterization of antibody-drug conjugates (ADCs) using mass spectrometry (MS) is important in drug discovery and formulation development and as part of the quality control processes. To facilitate electrospray ionization (ESI) and produce high-quality mass spectra, common components of storage solutions for monoclonal antibodies (mAbs) and ADCs, such as nonvolatile phosphate-buffered saline (PBS), should be replaced before analysis. Centrifugal spin-type kits are extensively used for the desalting or buffer-exchange of mAbs and ADCs samples. The commercially available kits commonly require at least 100 µL of a sample at 1 mg/mL for optimal recovery. However, most ESI-MS based analyses require no more than 25 µg of protein for triplicate injection. In this study, we present a novel method for desalting of ADCs and mAbs building on the SP3 approach with nonfunctionalized carboxylate coated magnetic beads without affinity ligands. The analytes bind to the hydrophilic beads upon the addition of organic solvent, and various solutions of volatile salts or acids can be used in the elution step. The optimized protocol allowed for 88% recovery of ADC at a 25 µL sample volume and 90% recovery at 100 µL. More than 90% of the salts were removed using a process of 20 min. The intra- and interday precision showed little variation with an RSD of 1% and 2%, respectively. The compatibility of this new workflow with low sample volumes is highly valuable since a smaller fraction of the sample is wasted for analysis of the expensive analytes, without compromising recovery.


Asunto(s)
Anticuerpos Monoclonales/química , Inmunoconjugados/análisis , Magnetismo , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Concentración de Iones de Hidrógeno , Inmunoconjugados/química , Espectrometría de Masas , Oligopéptidos/química , Reproducibilidad de los Resultados , Solventes/química , Trastuzumab/química
20.
ALTEX ; 37(4): 545-560, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32449787

RESUMEN

Azithromycin (AZM) is a broad-spectrum antibiotic widely used to treat infections. AZM also has been shown to have anti-inflammatory and immunomodulatory functions unrelated to its antibacterial activity that contribute to the effectiveness of this drug in chronic respiratory diseases. The mechanisms behind these beneficial effects are not yet fully elucidated. We have previously shown that AZM enhances barrier integrity of bronchial epithelial cells and directs them towards epidermal differentiation. In this study, we analyzed the effect of AZM pre-treatment of human bronchial and alveolar derived cell lines on mechanical stress in a cyclical pressure air-liquid interface device (CPAD) that models the disruption of the epithelial barrier with increased inflammatory response in lung tissue, which is associated with ventilator-induced lung injury (VILI). Immunostaining and electron microscopy showed that barrier integrity of the epithelium was compromised by cyclically stressing the cells but maintained when cells had been pre-treated with AZM. Lamellar body formation was revealed in AZM pre-treated cells, possibly further supporting the barrier-enhancing effects. RNA sequencing showed that the inflammatory response was attenuated by AZM treatment before cyclical stress. YKL-40, an emerging inflammatory marker, increased both due to cyclical stress and upon AZM treatment. These data confirm the usefulness of the CPAD to model ventilator-induced lung injury and suggest that AZM has barrier protective and immunomodulatory effects, attenuating the inflammatory response during mechanical stress, and might therefore be lung protective during mechanical ventilation. The model could be used to assess further drug candidates that influence barrier integrity and modulate inflammatory response.


Asunto(s)
Antibacterianos/farmacología , Azitromicina/farmacología , Células Epiteliales/efectos de los fármacos , Pulmón/citología , Lesión Pulmonar Inducida por Ventilación Mecánica/prevención & control , Alternativas a las Pruebas en Animales , Diferenciación Celular , Línea Celular , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA