Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(16)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-36012106

RESUMEN

High-calorie diets lead to hepatic steatosis and to the development of non-alcoholic fatty liver disease (NAFLD), which can evolve over many years into the inflammatory form of non-alcoholic steatohepatitis (NASH), posing a risk for the development of hepatocellular carcinoma (HCC). Due to diet and liver alteration, the axis between liver and gut is disturbed, resulting in gut microbiome alterations. Consequently, detecting these gut microbiome alterations represents a promising strategy for early NASH and HCC detection. We analyzed medical parameters and the fecal metaproteome of 19 healthy controls, 32 NASH patients, and 29 HCC patients, targeting the discovery of diagnostic biomarkers. Here, NASH and HCC resulted in increased inflammation status and shifts within the composition of the gut microbiome. An increased abundance of kielin/chordin, E3 ubiquitin ligase, and nucleophosmin 1 represented valuable fecal biomarkers, indicating disease-related changes in the liver. Although a single biomarker failed to separate NASH and HCC, machine learning-based classification algorithms provided an 86% accuracy in distinguishing between controls, NASH, and HCC. Fecal metaproteomics enables early detection of NASH and HCC by providing single biomarkers and machine learning-based metaprotein panels.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Biomarcadores , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/patología , Humanos , Hígado/patología , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patología , Enfermedad del Hígado Graso no Alcohólico/patología
2.
Nat Commun ; 12(1): 7305, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34911965

RESUMEN

Metaproteomics has matured into a powerful tool to assess functional interactions in microbial communities. While many metaproteomic workflows are available, the impact of method choice on results remains unclear. Here, we carry out a community-driven, multi-laboratory comparison in metaproteomics: the critical assessment of metaproteome investigation study (CAMPI). Based on well-established workflows, we evaluate the effect of sample preparation, mass spectrometry, and bioinformatic analysis using two samples: a simplified, laboratory-assembled human intestinal model and a human fecal sample. We observe that variability at the peptide level is predominantly due to sample processing workflows, with a smaller contribution of bioinformatic pipelines. These peptide-level differences largely disappear at the protein group level. While differences are observed for predicted community composition, similar functional profiles are obtained across workflows. CAMPI demonstrates the robustness of present-day metaproteomics research, serves as a template for multi-laboratory studies in metaproteomics, and provides publicly available data sets for benchmarking future developments.


Asunto(s)
Bacterias/genética , Proteínas Bacterianas/química , Heces/microbiología , Proteómica/métodos , Adulto , Bacterias/clasificación , Bacterias/aislamiento & purificación , Proteínas Bacterianas/genética , Femenino , Microbioma Gastrointestinal , Humanos , Intestinos/microbiología , Laboratorios , Espectrometría de Masas , Péptidos/química , Flujo de Trabajo
3.
Biomolecules ; 11(5)2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-34066026

RESUMEN

Gut microbiota-mediated inflammation promotes obesity-associated low-grade inflammation, which represents a hallmark of metabolic syndrome. To investigate if lifestyle-induced weight loss (WL) may modulate the gut microbiome composition and its interaction with the host on a functional level, we analyzed the fecal metaproteome of 33 individuals with metabolic syndrome in a longitudinal study before and after lifestyle-induced WL in a well-defined cohort. The 6-month WL intervention resulted in reduced BMI (-13.7%), improved insulin sensitivity (HOMA-IR, -46.1%), and reduced levels of circulating hsCRP (-39.9%), indicating metabolic syndrome reversal. The metaprotein spectra revealed a decrease of human proteins associated with gut inflammation. Taxonomic analysis revealed only minor changes in the bacterial composition with an increase of the families Desulfovibrionaceae, Leptospiraceae, Syntrophomonadaceae, Thermotogaceae and Verrucomicrobiaceae. Yet we detected an increased abundance of microbial metaprotein spectra that suggest an enhanced hydrolysis of complex carbohydrates. Hence, lifestyle-induced WL was associated with reduced gut inflammation and functional changes of human and microbial enzymes for carbohydrate hydrolysis while the taxonomic composition of the gut microbiome remained almost stable. The metaproteomics workflow has proven to be a suitable method for monitoring inflammatory changes in the fecal metaproteome.


Asunto(s)
Bacterias/metabolismo , Heces/microbiología , Microbioma Gastrointestinal , Inflamación/prevención & control , Estilo de Vida , Proteoma/metabolismo , Pérdida de Peso/fisiología , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Resistencia a la Insulina , Estudios Longitudinales , Masculino , Síndrome Metabólico/metabolismo , Síndrome Metabólico/microbiología , Persona de Mediana Edad , Obesidad/metabolismo , Obesidad/microbiología
4.
Harmful Algae ; 104: 102031, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-34023078

RESUMEN

Dinophysis spp. are mixotrophs that are dependent on specific prey, but are also potentially reliant on dissolved nutrients. The extent to which Dinophysis relies on exogenous N and the specific biochemical pathways important for supporting its autotrophic and heterotrophic growth are unknown. Here, the nutritional ecology of Dinophysis was explored using two approaches: 1) 15N tracer experiments were conducted to quantify the concentration-dependent uptake rates and associated kinetics of various N compounds (nitrate, ammonium, urea) of Dinophysis cultures and 2) the transcriptomic responses of Dinophysis cultures grown with multiple combinations of prey and nutrients were assessed via dinoflagellate spliced leader-based transcriptome profiling. Of the N compounds examined, ammonium had the highest Vmax and affinity coefficient, and lowest Ks for both pre-starved and pre-fed cultures, collectively demonstrating the preference of Dinophysis for this N source while little-to-no nitrate uptake was observed. During the transcriptome experiments, Dinophysis grown with nitrate and without prey had the largest number of genes with lower transcript abundances, did not increase abundance of transcripts associated with nitrate/nitrite uptake or reduction, and displayed no cellular growth, suggesting D. acuminata is not capable of growing on nitrate. When offered prey, the transcriptomic response of Dinophysis included the production of phagolysosomes, enzymes involved in protein and lipid catabolism, and N acquisition through amino acid degradation pathways. Compared with cultures only offered ammonium or prey, cultures offered both ammonium and prey had the largest number of genes with increased transcript abundances, the highest growth rate, and the unique activation of multiple pathways involved in cellular catabolism, further evidencing the ability of Dinophysis to grow optimally as a mixotroph. Collectively, this study evidences the key role ammonium plays in the mixotrophic growth of Dinophysis and reveals the precise biochemical pathways that facilitate its mixotrophic growth.


Asunto(s)
Compuestos de Amonio , Dinoflagelados , Dinoflagelados/genética , Nitratos , Transcriptoma
5.
PLoS One ; 14(11): e0223067, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31697694

RESUMEN

While harmful algal blooms caused by the ichthyotoxic dinoflagellate, Cochlodinium (Margalefidinium) polykrikoides, are allelopathic and may have unique associations with bacteria, a comprehensive assessment of the planktonic communities associated with these blooms has been lacking. Here, we used high-throughput amplicon sequencing to assess size fractionated (0.2 and 5 µm) bacterial (16S) and phytoplankton assemblages (18S) associated with blooms of C. polykrikoides during recurrent blooms in NY, USA. Over a three-year period, samples were collected inside ('patch') and outside ('non-patch') dense accumulations of C. polykrikoides to assess the microbiome associated with these blooms. Eukaryotic plankton communities of blooms had significantly lower diversity than non-bloom samples, and non-bloom samples hosted 30 eukaryotic operational taxonomic units (OTUs) not found within blooms, suggesting they may have been allelopathically excluded from blooms. Differential abundance analyses revealed that C. polykrikoides blooms were significantly enriched in dinoflagellates (p<0.001) and the experimental enrichment of C. polykrikoides led to a significant increase in the relative abundance of eight genera of dinoflagellates but a significant decline in other eukaryotic plankton. Amoebophrya co-dominated both within- and near- C. polykrikoides blooms and was more abundant in bloom patches. The core bacterial microbiome of the >0.2µm fraction of blooms was dominated by an uncultured bacterium from the SAR11 clade, while the >5µm size fraction was co-dominated by an uncultured bacterium from Rhodobacteraceae and Coraliomargarita. Two bacterial lineages within the >0.2µm fraction, as well as the Gammaproteobacterium, Halioglobus, from the >5µm fraction were unique to the microbiome of blooms, while there were 154 bacterial OTUs only found in non-bloom waters. Collectively, these findings reveal the unique composition and potential function of eukaryotic and prokaryotic communities associated with C. polykrikoides blooms.


Asunto(s)
Dinoflagelados/microbiología , Células Eucariotas/microbiología , Floraciones de Algas Nocivas/fisiología , Fitoplancton/microbiología , Células Procariotas/microbiología , Bacterias/genética , Estuarios , Microbiota/genética , New York
6.
Mar Environ Res ; 148: 46-56, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31085422

RESUMEN

The effects of co-occurring harmful algal blooms (HABs) on marine organisms is largely unknown. We assessed the individual and combined impacts of the toxin producing HABs, Alexandrium catenella and Dinophysis acuminata, and a non-toxin-producing HAB (Gymnodinium instriatum) on early life stages of two estuarine fish species (Menidia beryllina and Cyprinodon variegatus). Lethal (i.e. time to death) and sublethal (i.e. growth, grazing rate, and swimming activity) effects of cultured HABs were investigated for eleutheroembryo and larval life stages. Mixed algal treatments (i.e. A. catenella and D. acuminata mixtures) were often equally toxic as A. catenella monoculture treatments alone, although responses depended on the fish species and life stage. Fish exposed to toxin producing HABs died significantly sooner (i.e. <1-3 days) than controls. Significant differences in sublethal effects were also found between fed controls and toxic HAB treatments, although responses were often similar to G. instriatum or starved controls. Collectively, the results demonstrate that HABs may reduce fish productivity and fitness.


Asunto(s)
Ecotoxicología , Embrión no Mamífero/efectos de los fármacos , Peces/embriología , Floraciones de Algas Nocivas , Toxinas Marinas/toxicidad , Animales , Dinoflagelados , Embrión no Mamífero/patología , Estuarios , Peces/crecimiento & desarrollo , Peces Killi/embriología , Peces Killi/crecimiento & desarrollo , Larva , Ácido Ocadaico/toxicidad , Saxitoxina/toxicidad
7.
Mar Drugs ; 16(1)2018 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-29342840

RESUMEN

Marine biotoxin-contaminated seafood has caused thousands of poisonings worldwide this century. Given these threats, there is an increasing need for improved technologies that can be easily integrated into coastal monitoring programs. This study evaluates approaches for monitoring toxins associated with recurrent toxin-producing Alexandrium and Dinophysis blooms on Long Island, NY, USA, which cause paralytic and diarrhetic shellfish poisoning (PSP and DSP), respectively. Within contrasting locations, the dynamics of pelagic Alexandrium and Dinophysis cell densities, toxins in plankton, and toxins in deployed blue mussels (Mytilus edulis) were compared with passive solid-phase adsorption toxin tracking (SPATT) samplers filled with two types of resin, HP20 and XAD-2. Multiple species of wild shellfish were also collected during Dinophysis blooms and used to compare toxin content using two different extraction techniques (single dispersive and double exhaustive) and two different toxin analysis assays (liquid chromatography/mass spectrometry and the protein phosphatase inhibition assay (PP2A)) for the measurement of DSP toxins. DSP toxins measured in the HP20 resin were significantly correlated (R² = 0.7-0.9, p < 0.001) with total DSP toxins in shellfish, but were detected more than three weeks prior to detection in deployed mussels. Both resins adsorbed measurable levels of PSP toxins, but neither quantitatively tracked Alexandrium cell densities, toxicity in plankton or toxins in shellfish. DSP extraction and toxin analysis methods did not differ significantly (p > 0.05), were highly correlated (R² = 0.98-0.99; p < 0.001) and provided complete recovery of DSP toxins from standard reference materials. Blue mussels (Mytilus edulis) and ribbed mussels (Geukensia demissa) were found to accumulate DSP toxins above federal and international standards (160 ng g-1) during Dinophysis blooms while Eastern oysters (Crassostrea virginica) and soft shell clams (Mya arenaria) did not. This study demonstrated that SPATT samplers using HP20 resin coupled with PP2A technology could be used to provide early warning of DSP, but not PSP, events for shellfish management.


Asunto(s)
Dinoflagelados/química , Toxinas Marinas/química , Mariscos/análisis , Mariscos/parasitología , Animales , Cromatografía Liquida/métodos , Monitoreo del Ambiente/métodos , Mytilus edulis/parasitología , Alimentos Marinos/análisis , Alimentos Marinos/parasitología , Agua de Mar/parasitología , Espectrometría de Masas en Tándem/métodos
9.
Harmful Algae ; 68: 17-30, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28962978

RESUMEN

Biotic interactions dominate plankton communities, yet the microbial consortia associated with harmful algal blooms (HABs) have not been well-described. Here, high-throughput amplicon sequencing of ribosomal genes was used to quantify the dynamics of bacterial (16S) and phytoplankton assemblages (18S) associated with blooms and cultures of two harmful algae, Alexandrium fundyense and Dinophysis acuminata. Experiments were performed to assess changes in natural bacterial and phytoplankton communities in response to the filtrate from cultures of these two harmful algae. Analysis of prokaryotic sequences from ecosystems, experiments, and cultures revealed statistically unique bacterial associations with each HAB. The dinoflagellate, Alexandrium, was strongly associated with multiple genera of Flavobacteria including Owenweeksia spp., Maribacter spp., and individuals within the NS5 marine group. While Flavobacteria also dominated Dinophysis-associated communities, the relative abundance of Alteromonadales bacteria strongly co-varied with Dinophysis abundances during blooms and Ulvibacter spp. (Flavobacteriales) and Arenicella spp. (Gammaproteobacteria) were associated with cells in culture. Eukaryotic sequencing facilitated the discovery of the endosymbiotic, parasitic dinoflagellate, Amoebophrya spp., that had not been regionally described but represented up to 17% of sequences during Alexandrium blooms. The presence of Alexandrium in field samples and in experiments significantly altered the relative abundances of bacterial and phytoplankton by both suppressing and promoting different taxa, while this effect was weaker in Dinophysis. Experiments specifically revealed a negative feedback loop during blooms whereby Alexandrium filtrate promoted the abundance of the parasite, Amoebophrya spp. Collectively, this study demonstrates that HABs formed by Alexandrium and Dinophysis harbor unique prokaryotic and eukaryotic microbiomes that are likely to, in turn, influence the dynamics of these HABs.


Asunto(s)
Dinoflagelados/microbiología , Floraciones de Algas Nocivas , Microbiota , Secuencia de Bases , Filogenia , Fitoplancton/microbiología , Análisis de Componente Principal
10.
Proc Natl Acad Sci U S A ; 114(19): 4975-4980, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28439007

RESUMEN

Global ocean temperatures are rising, yet the impacts of such changes on harmful algal blooms (HABs) are not fully understood. Here we used high-resolution sea-surface temperature records (1982 to 2016) and temperature-dependent growth rates of two algae that produce potent biotoxins, Alexandrium fundyense and Dinophysis acuminata, to evaluate recent changes in these HABs. For both species, potential mean annual growth rates and duration of bloom seasons significantly increased within many coastal Atlantic regions between 40°N and 60°N, where incidents of these HABs have emerged and expanded in recent decades. Widespread trends were less evident across the North Pacific, although regions were identified across the Salish Sea and along the Alaskan coastline where blooms have recently emerged, and there have been significant increases in the potential growth rates and duration of these HAB events. We conclude that increasing ocean temperature is an important factor facilitating the intensification of these, and likely other, HABs and thus contributes to an expanding human health threat.


Asunto(s)
Dinoflagelados/crecimiento & desarrollo , Eutrofización , Calentamiento Global , Ácido Ocadaico/metabolismo , Saxitoxina/biosíntesis , Océano Atlántico , Humanos , Ácido Ocadaico/toxicidad , Océano Pacífico , Saxitoxina/toxicidad
11.
Toxicon ; 129: 36-43, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28209476

RESUMEN

Diamondback terrapins (Malaclemys terrapin) are a threatened or endangered species in much of their range along the U.S. Atlantic and Gulf coasts. Over an approximately three-week period from late April to mid-May 2015, hundreds of adult diamondback terrapins were found dead on the shores of Flanders Bay, Long Island, New York, USA. Concurrent with the mortality event, elevated densities of the paralytic shellfish toxin (PST)-producing dinoflagellate, Alexandrium fundyense (>104 cells L-1) and high levels of PST in bivalves (maximal levels = 540 µg STX eq. 100 g-1 shellfish tissue) were observed in the Flanders Bay region, resulting in shellfish bed closures in regional tributaries. Gross and histologic postmortem examinations of terrapins revealed no physical trauma to individuals or a common, underlying disease process to explain the deaths. PST compounds (0.2-12.5 µg STX eq. 100 g-1) were present in various M. terrapin tissues collected over the duration of the mortality event. High-throughput sequencing revealed that the ribbed mussel (Geukensia demissa, a PST vector) was present in the gastrointestinal tracks of all terrapin samples tested. While the potential of PST to cause mortality in chelonians has not been well-characterized, in the absence of other significant findings from necropsies and pathological analyses, we provide evidence that PST in shellfish was likely high enough to cause or contribute to the mortality in these small (<2.0 kg) animals.


Asunto(s)
Enfermedades de los Animales/mortalidad , Dinoflagelados/química , Floraciones de Algas Nocivas , Toxinas Marinas/toxicidad , Intoxicación por Mariscos/veterinaria , Tortugas , Enfermedades de los Animales/inducido químicamente , Animales , Bahías/química , Bivalvos , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , New York , Saxitoxina/toxicidad , Mariscos
12.
Appl Environ Microbiol ; 82(4): 1114-1125, 2016 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-26637596

RESUMEN

Cochlodinium polykrikoides is a cosmopolitan dinoflagellate that is notorious for causing fish-killing harmful algal blooms (HABs) across North America and Asia. While recent laboratory and ecosystem studies have definitively demonstrated that Cochlodinium forms resting cysts that may play a key role in the dynamics of its HABs, uncertainties regarding cyst morphology and detection have prohibited even a rudimentary understanding of the distribution of C. polykrikoides cysts in coastal ecosystems. Here, we report on the development of a fluorescence in situ hybridization (FISH) assay using oligonucleotide probes specific for the large subunit (LSU) ribosomal DNA (rDNA) of C. polykrikoides. The LSU rDNA-targeted FISH assay was used with epifluorescence microscopy and was iteratively refined to maximize the fluorescent reaction with C. polykrikoides and minimize cross-reactivity. The final LSU rDNA-targeted FISH assay was found to quantitatively recover cysts made by North American isolates of C. polykrikoides but not cysts formed by other common cyst-forming dinoflagellates. The method was then applied to identify and map C. polykrikoides cysts across bloom-prone estuaries. Annual cyst and vegetative cell surveys revealed that elevated densities of C. polykrikoides cysts (>100 cm(-3)) during the spring of a given year were spatially consistent with regions of dense blooms the prior summer. The identity of cysts in sediments was confirmed via independent amplification of C. polykrikoides rDNA. This study mapped C. polykrikoides cysts in a natural marine setting and indicates that the excystment of cysts formed by this harmful alga may play a key role in the development of HABs of this species.


Asunto(s)
Dinoflagelados/aislamiento & purificación , Estuarios , Sedimentos Geológicos/parasitología , Hibridación Fluorescente in Situ/métodos , Esporas Protozoarias/aislamiento & purificación , ADN Protozoario/genética , ADN Ribosómico/genética , Dinoflagelados/genética , Microscopía Fluorescente , América del Norte , Sondas de Oligonucleótidos/genética , ARN Ribosómico/genética , Estaciones del Año , Sensibilidad y Especificidad , Esporas Protozoarias/genética
13.
PLoS One ; 10(4): e0124148, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25894567

RESUMEN

Diarrhetic Shellfish Poisoning (DSP) is a globally significant human health syndrome most commonly caused by dinoflagellates within the genus Dinophysis. While blooms of harmful algae have frequently been linked to excessive nutrient loading, Dinophysis is a mixotrophic alga whose growth is typically associated with prey availability. Consequently, field studies of Dinophysis and nutrients have been rare. Here, the temporal dynamics of Dinophysis acuminata blooms, DSP toxins, and nutrients (nitrate, ammonium, phosphate, silicate, organic compounds) were examined over four years within two New York estuaries (Meetinghouse Creek and Northport Bay). Further, changes in the abundance and toxicity of D. acuminata were assessed during a series of nutrient amendment experiments performed over a three year period. During the study, Dinophysis acuminata blooms exceeding one million cells L-1 were observed in both estuaries. Highly significant (p<0.001) forward stepwise multivariate regression models of ecosystem observations demonstrated that D. acuminata abundances were positively dependent on multiple environmental parameters including ammonium (p = 0.007) while cellular toxin content was positively dependent on ammonium (p = 0.002) but negatively dependent on nitrate (p<0.001). Nitrogen- (N) and phosphorus- (P) containing inorganic and organic nutrients significantly enhanced D. acuminata densities in nearly all (13 of 14) experiments performed. Ammonium significantly increased cell densities in 10 of 11 experiments, while glutamine significantly enhanced cellular DSP content in 4 of 5 experiments examining this compound. Nutrients may have directly or indirectly enhanced D. acuminata abundances as densities of this mixotroph during experiments were significantly correlated with multiple members of the planktonic community (phytoflagellates and Mesodinium). Collectively, this study demonstrates that nutrient loading and more specifically N-loading promotes the growth and toxicity of D. acuminata populations in coastal zones.


Asunto(s)
Dinoflagelados/crecimiento & desarrollo , Dinoflagelados/metabolismo , Ecosistema , Estuarios , Alimentos , Toxinas Marinas/química , Nitrógeno/metabolismo , Humanos
14.
Limnol Oceanogr ; 60(1): 198-214, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27721521

RESUMEN

The effects of coastal acidification on the growth and toxicity of the saxitoxin-producing dinoflagellate Alexandrium fundyense were examined in culture and ecosystem studies. In culture experiments, Alexandrium strains isolated from Northport Bay NY, USA, and the Bay of Fundy, Canada, grew significantly faster (16 -190%; p<0.05) when exposed to elevated levels of pCO2 (~ 800- 1900µatm) compared to lower levels (~390µatm). Exposure to higher levels of pCO2 also resulted in significant increases (71 - 81%) in total cellular toxicity (fg STX eq. cell-1) in the Northport Bay strain, while no changes in toxicity were detected in the Bay of Fundy strain. The positive relationship between pCO2 enhancement and elevated growth was reproducible using natural populations from Northport; Alexandrium densities were significantly and consistently enhanced when natural populations were incubated at 1500 µatm pCO2, a value at the upper range of those recorded in Northport Bay, 390 - 1500 µatm. During natural Alexandrium blooms in Northport Bay, pCO2 concentrations increased over the course of a bloom to more than 1700µatm and were highest in regions with the greatest Alexandrium abundances, suggesting Alexandrium may be further exacerbating acidification or be especially adapted to these extreme, acidified conditions. The co-occurrence of Alexandrium blooms and elevated pCO2 represents a previously unrecognized, compounding environmental threat to coastal ecosystems. The ability of elevated pCO2 to enhance the growth and toxicity of Alexandrium indicates that acidification promoted by eutrophication or climate change can intensify these, and perhaps other, harmful algal blooms.

15.
Front Microbiol ; 3: 363, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23091470

RESUMEN

While vitamin B(12) has recently been shown to co-limit the growth of coastal phytoplankton assemblages, the cycling of B-vitamins in coastal ecosystems is poorly understood as planktonic uptake rates of vitamins B(1) and B(12) have never been quantified in tandem in any aquatic ecosystem. The goal of this study was to establish the relationships between plankton community composition, carbon fixation, and B-vitamin assimilation in two contrasting estuarine systems. We show that, although B-vitamin concentrations were low (pM), vitamin concentrations and uptake rates were higher within a more eutrophic estuary and that vitamin B(12) uptake rates were significantly correlated with rates of primary production. Eutrophic sites hosted larger bacterial and picoplankton abundances with larger carbon normalized vitamin uptake rates. Although the >2 µm phytoplankton biomass was often dominated by groups with a high incidence of vitamin auxotrophy (dinoflagellates and diatoms), picoplankton (<2 µm) were always responsible for the majority of B(12)-vitamin uptake. Multiple lines of evidence suggest that heterotrophic bacteria were the primary users of vitamins among the picoplankton during this study. Nutrient/vitamin amendment experiments demonstrated that, in the Summer and Fall, vitamin B(12) occasionally limited or co-limited the accumulation of phytoplankton biomass together with nitrogen. Combined with prior studies, these findings suggest that picoplankton are the primary producers and users of B-vitamins in some coastal ecosystems and that rapid uptake of B-vitamins by heterotrophic bacteria may sometimes deprive larger phytoplankton of these micronutrients and thus influence phytoplankton species succession.

16.
Proc Natl Acad Sci U S A ; 108(11): 4352-7, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21368207

RESUMEN

Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking, because the biochemical pathways that facilitate their dominance relative to other phytoplankton within specific environments have not been identified. Here, biogeochemical measurements showed that the harmful alga Aureococcus anophagefferens outcompeted co-occurring phytoplankton in estuaries with elevated levels of dissolved organic matter and turbidity and low levels of dissolved inorganic nitrogen. We subsequently sequenced the genome of A. anophagefferens and compared its gene complement with those of six competing phytoplankton species identified through metaproteomics. Using an ecogenomic approach, we specifically focused on gene sets that may facilitate dominance within the environmental conditions present during blooms. A. anophagefferens possesses a larger genome (56 Mbp) and has more genes involved in light harvesting, organic carbon and nitrogen use, and encoding selenium- and metal-requiring enzymes than competing phytoplankton. Genes for the synthesis of microbial deterrents likely permit the proliferation of this species, with reduced mortality losses during blooms. Collectively, these findings suggest that anthropogenic activities resulting in elevated levels of turbidity, organic matter, and metals have opened a niche within coastal ecosystems that ideally suits the unique genetic capacity of A. anophagefferens and thus, has facilitated the proliferation of this and potentially other HABs.


Asunto(s)
Ecosistema , Eucariontes/genética , Genómica/métodos , Secuencia de Aminoácidos , Bacterias/metabolismo , Bacterias/efectos de la radiación , Biodegradación Ambiental/efectos de la radiación , Enzimas/metabolismo , Eucariontes/enzimología , Genoma/genética , Luz , Filogenia , Fitoplancton/genética , Fitoplancton/efectos de la radiación , Proteínas/química , Especificidad de la Especie
17.
World J Urol ; 27(3): 411-8, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19145437

RESUMEN

PURPOSE: Patients with benign prostatic hyperplasia (BPH) and bladder outlet obstruction (BOO) frequently develop lower urinary tract symptoms (LUTS). To elucidate the underlying pathomechanisms we focused on altered cellular communication between detrusor cells. METHODS: Bladder biopsies were collected from eight BPH patients with compensated BOO and from eight non-obstructed patients. Detrusor areas were separated by laser capture microdissection microscopy, and extracted RNA was subjected to quantitative RT-PCR for connexin43 and connexin45. Furthermore, localization of connexin45 and lysosome membrane associated protein 1 was studied by immunohistochemistry. RESULTS: We found the human detrusor to express connexin45 rather than connexin43. Compared to controls, connexin45 expression was not significantly changed in detrusors of obstructed patients. However, connexin45 protein patterns were focally altered in obstruction. CONCLUSIONS: Our study is the first to provide evidence that connexin45-coupling of detrusor cells may be regionally impaired in patients with BOO due to BPH. The altered connexin45 coupling may contribute to LUTS.


Asunto(s)
Conexinas/biosíntesis , Hiperplasia Prostática/complicaciones , Obstrucción del Cuello de la Vejiga Urinaria/etiología , Obstrucción del Cuello de la Vejiga Urinaria/metabolismo , Anciano , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...