Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 652: 1-18, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30347308

RESUMEN

Industrial processes, coal combustion, biomass burning (BB), and vehicular transport are important sources of atmospheric fine particles (PM2.5) and contribute to ambient air concentrations of health-hazardous species, such as heavy metals, polycyclic aromatic hydrocarbons (PAH), and oxygenated-PAHs (OPAH). In China, emission controls have been implemented to improve air quality during large events, like the Youth Olympic Games (YOG) in August 2014 in Nanjing. In this work, six measurement campaigns between January 2014 and August 2015 were undertaken in Nanjing to determine the effects of emission controls and meteorological factors on PM2.5 concentration and composition. PAHs, OPAHs, hopanes, n­alkanes, heavy metals, and several other inorganic elements were measured. PM2.5 and potassium concentrations were the highest in May-June 2014 indicating the prevalence of BB plumes in Nanjing. Emission controls substantially reduced concentrations of PM2.5 (31%), total PAHs (59%), OPAHs (37%), and most heavy metals (44-89%) during the YOG compared to August 2015. In addition, regional atmospheric transport and meteorological parameters partly explained the observed differences between the campaigns. The most abundant PAHs and OPAHs were benzo[b,k]fluoranthenes, fluoranthene, pyrene, chrysene, 1,8­naphthalic anhydride, and 9,10­anthracenedione in all campaigns. Carbon preference index and the contribution of wax n­alkanes indicated mainly biogenic sources of n­alkanes in May-June 2014 and anthropogenic sources in the other campaigns. Hopane indexes pointed to vehicular transport as the major source of hopanes, but contribution of coal combustion was detected in winter 2015. The results provide evidence to the local government of the impacts of the air protection regulations. However, differences between individual components were observed, e.g., concentrations of potentially more harmful OPAHs decreased less than concentrations of PAHs. The results suggest that the proportions of hazardous components in the PM2.5 may also change considerably due to emission control measures.

2.
Sci Rep ; 8(1): 14160, 2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-30242199

RESUMEN

Comprehensive representation of nanoparticle dynamics is necessary for understanding nucleation and growth phenomena. This is critical in atmospheric physics, as airborne particles formed from vapors have significant but highly uncertain effects on climate. While the vapor-particle mass exchange driving particle growth can be described by a macroscopic, continuous substance for large enough particles, the growth dynamics of the smallest nanoparticles involve stochastic fluctuations in particle size due to discrete molecular collision and decay processes. To date, there have been no generalizable methods for quantifying the particle size regime where the discrete effects become negligible and condensation models can be applied. By discrete simulations of sub-10 nm particle populations, we demonstrate the importance of stochastic effects in the nanometer size range. We derive a novel, theory-based, simple and robust metric for identifying the exact sizes where these effects cannot be omitted for arbitrary molecular systems. The presented metric, based on examining the second- and first-order derivatives of the particle size distribution function, is directly applicable to experimental size distribution data. This tool enables quantifying the onset of condensational growth without prior information on the properties of the vapors and particles, thus allowing robust experimental resolving of nanoparticle formation physics.

3.
Sci Total Environ ; 639: 1290-1310, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29929296

RESUMEN

Ambient inhalable particulate matter (PM) is a serious health concern worldwide, but especially so in China where high PM concentrations affect huge populations. Atmospheric processes and emission sources cause spatial and temporal variations in PM concentration and chemical composition, but their influence on the toxicological characteristics of PM are still inadequately understood. In this study, we report an extensive chemical and toxicological characterization of size-segregated urban air inhalable PM collected in August and October 2013 from Nanjing, and assess the effects of atmospheric processes and likely emission sources. A549 human alveolar epithelial cells were exposed to day- and nighttime PM samples (25, 75, 150, 200, 300 µg/ml) followed by analyses of cytotoxicity, genotoxicity, cell cycle, and inflammatory response. PM10-2.5 and PM0.2 caused the greatest toxicological responses for different endpoints, illustrating that particles with differing size and chemical composition activate distinct toxicological pathways in A549 cells. PM10-2.5 displayed the greatest oxidative stress and genotoxic responses; both were higher for the August samples compared with October. In contrast, PM0.2 and PM2.5-1.0 samples displayed high cytotoxicity and substantially disrupted cell cycle; August samples were more cytotoxic whereas October samples displayed higher cell cycle disruption. Several components associated with combustion, traffic, and industrial emissions displayed strong correlations with these toxicological responses. The lower responses for PM1.0-0.2 compared to PM0.2 and PM2.5-1.0 indicate diminished toxicological effects likely due to aerosol aging and lower proportion of fresh emission particles rich in highly reactive chemical components in the PM1.0-0.2 fraction. Different emission sources and atmospheric processes caused variations in the chemical composition and toxicological responses between PM fractions, sampling campaigns, and day and night. The results indicate different toxicological pathways for coarse-mode particles compared to the smaller particle fractions with typically higher content of combustion-derived components. The variable responses inside PM fractions demonstrate that differences in chemical composition influence the induced toxicological responses.

4.
Environ Sci Technol ; 52(8): 4979-4988, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29517225

RESUMEN

Residential wood combustion (RWC) emits high amounts of volatile organic compounds (VOCs) into ambient air, leading to formation of secondary organic aerosol (SOA), and various health and climate effects. In this study, the emission factors of VOCs from a logwood-fired modern masonry heater were measured using a Proton-Transfer-Reactor Time-of-Flight Mass Spectrometer. Next, the VOCs were aged in a 29 m3 Teflon chamber equipped with UV black lights, where dark and photochemical atmospheric conditions were simulated. The main constituents of the VOC emissions were carbonyls and aromatic compounds, which accounted for 50%-52% and 30%-46% of the detected VOC emission, respectively. Emissions were highly susceptible to different combustion conditions, which caused a 2.4-fold variation in emission factors. The overall VOC concentrations declined considerably during both dark and photochemical aging, with simultaneous increase in particulate organic aerosol mass. Especially furanoic and phenolic compounds decreased, and they are suggested to be the major precursors of RWC-originated SOA in all aging conditions. On the other hand, dark aging produced relatively high amounts of nitrogen-containing organic compounds in both gas and particulate phase, while photochemical aging increased especially the concentrations of certain gaseous carbonyls, particularly acid anhydrides.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Aerosoles , Gases , Esmog
5.
J Chem Phys ; 142(1): 011102, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25573546

RESUMEN

Despite recent advances in monitoring nucleation from a vapor at close-to-molecular resolution, the identity of the critical cluster, forming the bottleneck for the nucleation process, remains elusive. During past twenty years, the first nucleation theorem has been often used to extract the size of the critical cluster from nucleation rate measurements. However, derivations of the first nucleation theorem invoke certain questionable assumptions that may fail, e.g., in the case of atmospheric new particle formation, including absence of sub-critical cluster losses and heterogeneous nucleation on pre-existing nanoparticles. Here, we extend the kinetic derivation of the first nucleation theorem to give a general framework to include such processes, yielding sum rules connecting the size dependent particle formation and loss rates to the corresponding loss-free nucleation rate and the apparent critical size from a naïve application of the first nucleation theorem that neglects them.

6.
Environ Sci Technol ; 47(6): 2645-53, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-23419193

RESUMEN

This study presents results of direct observations of aerosol chemical composition in clouds. A high-resolution time-of-flight aerosol mass spectrometer was used to make measurements of cloud interstitial particles (INT) and mixed cloud interstitial and droplet residual particles (TOT). The differences between these two are the cloud droplet residuals (RES). Positive matrix factorization analysis of high-resolution mass spectral data sets and theoretical calculations were performed to yield distributions of chemical composition of the INT and RES particles. We observed that less oxidized hydrocarbon-like organic aerosols (HOA) were mainly distributed into the INT particles, whereas more oxidized low-volatile oxygenated OA (LVOOA) mainly in the RES particles. Nitrates existed as organic nitrate and in chemical form of NH(4)NO(3). Organic nitrates accounted for 45% of total nitrates in the INT particles, in clear contrast to 26% in the RES particles. Meanwhile, sulfates coexist in forms of acidic NH(4)HSO(4) and neutralized (NH(4))(2)SO(4). Acidic sulfate made up 64.8% of total sulfates in the INT particles, much higher than 10.7% in the RES particles. The results indicate a possible joint effect of activation ability of aerosol particles, cloud processing, and particle size effects on cloud formation.


Asunto(s)
Aerosoles/química , Atmósfera , Espectrometría de Masas/métodos , Ácidos/análisis , Nitratos/análisis , Tamaño de la Partícula , Sulfatos/análisis
7.
Science ; 339(6122): 943-6, 2013 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-23430652

RESUMEN

Atmospheric nucleation is the dominant source of aerosol particles in the global atmosphere and an important player in aerosol climatic effects. The key steps of this process occur in the sub-2-nanometer (nm) size range, in which direct size-segregated observations have not been possible until very recently. Here, we present detailed observations of atmospheric nanoparticles and clusters down to 1-nm mobility diameter. We identified three separate size regimes below 2-nm diameter that build up a physically, chemically, and dynamically consistent framework on atmospheric nucleation--more specifically, aerosol formation via neutral pathways. Our findings emphasize the important role of organic compounds in atmospheric aerosol formation, subsequent aerosol growth, radiative forcing and associated feedbacks between biogenic emissions, clouds, and climate.

8.
Nat Protoc ; 7(9): 1651-67, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22899333

RESUMEN

The formation of new atmospheric aerosol particles and their subsequent growth have been observed frequently at various locations all over the world. The atmospheric nucleation rate (or formation rate) and growth rate (GR) are key parameters to characterize the phenomenon. Recent progress in measurement techniques enables us to measure atmospheric nucleation at the size (mobility diameter) of 1.5 (±0.4) nm. The detection limit has decreased from 3 to 1 nm within the past 10 years. In this protocol, we describe the procedures for identifying new-particle-formation (NPF) events, and for determining the nucleation, formation and growth rates during such events under atmospheric conditions. We describe the present instrumentation, best practices and other tools used to investigate atmospheric nucleation and NPF at a certain mobility diameter (1.5, 2.0 or 3.0 nm). The key instruments comprise devices capable of measuring the number concentration of the formed nanoparticles and their size, such as a suite of modern condensation particle counters (CPCs) and air ion spectrometers, and devices for characterizing the pre-existing particle number concentration distribution, such as a differential mobility particle sizer (DMPS). We also discuss the reliability of the methods used and requirements for proper measurements and data analysis. The time scale for realizing this procedure is 1 year.


Asunto(s)
Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Atmósfera/análisis , Técnicas de Química Analítica/métodos , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Técnicas de Química Analítica/instrumentación , Monitoreo del Ambiente/instrumentación , Tamaño de la Partícula
9.
Phys Rev Lett ; 108(8): 085701, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22463542

RESUMEN

First order phase transitions involve nucleation, formation of nanoscale regions of a new phase within a metastable parent phase. Using the heterogeneous nucleation theorem we show how clusters formed by nucleation on single molecules evolve from the gas phase and determine the critical size beyond which condensation starts to form aerosol particles. Our experiments reveal the activation of molecules into droplets to happen via formation of critical clusters substantially larger than the seed molecule. The nanosized critical clusters were found to be well predicted by the Kelvin-Thomson relation pointing directly to the key step in the phase transition.

10.
J Chem Phys ; 136(9): 094107, 2012 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-22401429

RESUMEN

The critical cluster is the threshold size above which a cluster will be more likely to grow than to evaporate. In field and laboratory measurements of new particle formation, the number of molecules of a given species in the critical cluster is commonly taken to be the slope of the log-log plot of the formation rate versus the concentration of the species. This analysis is based on an approximate form of the first nucleation theorem, which is derived with the assumption that there are no minima in the free energy surface prior to the maximum at the critical size. However, many atmospherically relevant systems are likely to exhibit such minima, for example, ions surrounded by condensable vapour molecules or certain combinations of acids and bases. We have solved numerically the birth-death equations for both an electrically neutral one-component model system with a local minimum at pre-critical sizes and an ion-induced case. For the ion-induced case, it is verified that the log-log slope of the nucleation rate versus particle concentration plot gives accurately the difference between the cluster sizes at the free energy maximum and minimum, as is expected from the classical form of the ion-induced nucleation rate. However, the results show that applying the nucleation theorem to neutral systems with stable pre-nucleation clusters may lead to erroneous interpretations about the nature of the critical cluster.

11.
Environ Sci Technol ; 43(16): 6269-74, 2009 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-19746724

RESUMEN

In this study, we designed and built a condensing heat exchanger capable of simultaneous fine particle emission reduction and waste heat recovery. The deposition mechanisms inside the heat exchanger prototype were maximized using a computer model which was later compared to actual measurements. The main deposition mechanisms were diffusio- and thermophoresis which have previously been examined in similar conditions only separately. The obtained removal efficiency in the experiments was measured in the total number concentration and ranged between 26 and 40% for the given pellet stove and the heat exchanger. Size distributions and number concentrations were measured with a TSI Fast mobility particle sizer (FMPS). The computer model predicts that there exists a specific upper limit for thermo- and diffusiophoretic deposition for each temperature and water vapor concentration in the flue gas.


Asunto(s)
Calor , Material Particulado/análisis , Madera/química , Aerosoles/química , Modelos Químicos , Tamaño de la Partícula , Agua
12.
Science ; 319(5868): 1374-7, 2008 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-18323450

RESUMEN

Generation, investigation, and manipulation of nanostructured materials are of fundamental and practical importance for several disciplines, including materials science and medicine. Recently, atmospheric new particle formation in the nanometer-size range has been found to be a global phenomenon. Still, its detailed mechanisms are mostly unknown, largely depending on the incapability to generate and measure nanoparticles in a controlled way. In our experiments, an organic vapor (n-propanol) condenses on molecular ions, as well as on charged and uncharged inorganic nanoparticles, via initial activation by heterogeneous nucleation. We found a smooth transition in activation behavior as a function of size and activation to occur well before the onset of homogeneous nucleation. Furthermore, nucleation enhancement for charged particles and a substantial negative sign preference were quantitatively detected.

13.
J Phys Chem A ; 111(50): 12995-3002, 2007 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-18044850

RESUMEN

The surface tension of adipic aqueous solutions was measured as a function of temperature (T=278-313 K) and adipic acid mole fraction (X=0.000-0.003) using the Wilhelmy plate method. A parametrization fitted to these data is presented. The evaporation rates of binary water-malonic and water-adipic acid droplets were measured with a TDMA technique at different temperatures (T=293-300 K) and relative humidities (58-80%), and the saturation vapor pressures of subcooled liquid malonic and adipic acids were derived from the data using a binary evaporation model. The temperature dependence of the vapor pressures was obtained as least-squares fits to the derived vapor pressures: ln(Psat,l) (Pa)=220.2389-22634.96/T (K)-26.66767 ln T (K) for malonic acid and ln(Psat,l) (Pa)=140.6704-18230.97/T (K)-15.48011 ln T (K) for adipic acid.


Asunto(s)
Adipatos/química , Malonatos/química , Análisis de los Mínimos Cuadrados , Soluciones , Tensión Superficial , Temperatura
14.
Science ; 318(5847): 89-92, 2007 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-17761851

RESUMEN

Atmospheric aerosol formation is known to occur almost all over the world, and the importance of these particles to climate and air quality has been recognized. Although almost all of the processes driving aerosol formation take place below a particle diameter of 3 nanometers, observations cover only larger particles. We introduce an instrumental setup to measure atmospheric concentrations of both neutral and charged nanometer-sized clusters. By applying the instruments in the field, we come to three important conclusions: (i) A pool of numerous neutral clusters in the sub-3 nanometer size range is continuously present; (ii) the processes initiating atmospheric aerosol formation start from particle sizes of approximately 1.5 nanometers; and (iii) neutral nucleation dominates over the ion-induced mechanism, at least in boreal forest conditions.

15.
Phys Rev Lett ; 93(7): 075701, 2004 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-15324249

RESUMEN

In this Letter we report, for the first time, direct and simultaneous determinations of mass and thermal accommodation coefficients for water vapor condensation in air, based on the observation of droplet growth kinetics in an expansion cloud chamber. Our experiments exclude values below 0.85 for the thermal and below 0.4 for the mass accommodation coefficients at temperatures ranging from 250 to 290 K. Both coefficients are likely to be 1 for all studied conditions. Previously available experimental data on the mass accommodation coefficient for water span about 3 orders of magnitude. Our results provide new and firm insight to cloud microphysics and consequently to the global radiative balance.

16.
J Colloid Interface Sci ; 274(2): 526-30, 2004 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-15144825

RESUMEN

Silver nanoparticles were prepared in a tubular flow reactor using an evaporation-condensation technique. The size distribution of the particles was measured using standard aerosol instruments and electron microscopy. A comparison with results obtained by a discrete population balance model with molecule-by-molecule resolution suggest that the particles probably nucleate kinetically through a dimerization process instead of a thermodynamic pathway over a free energy barrier, as is typically described by classical nucleation theory. Furthermore, the kinetic rate of dimerization seems to be accompanied by a correction term, associated with the requirement of energy and momentum conservation in molecule-molecule collisions. This energy conservation requires the presence of three-body collisions at the very initial step of particle formation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...