Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Tree Physiol ; 42(12): 2480-2501, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-35939338

RESUMEN

The aboveground parts of boreal forest trees mostly grow earlier, and the roots later, in the growing season. We aimed to experimentally test whether the extrinsic driver of soil temperature or the intrinsic driver (resource competition between plant parts) is a more important control for the root and shoot growth of silver birch (Betula pendula Roth) seedlings. Sixteen two-year-old seedlings were grown in controlled environment rooms for two simulated growing seasons (GS1, GS2). In GS1, all the seedlings were acclimatized under the same conditions, but in GS2, the soil temperature treatments were: (i) constant 10 °C (Cool); (ii) constant 18 °C (Warm); (iii) early growing season at 10 °C, switched to 18 °C later (Early Cool Late Warm, ECLW) and (iv) early growing season 18 °C, switched to 10 °C later (Early Warm Late Cool, EWLC). The treatments did not affect growth allocation between shoots and roots. Warm soil benefitted shoot elongation as it slowed down in EWLC and accelerated in ECLW after the soil temperature switch. However, whole-tree biomasses were similar to Cool and the seedlings grew largest in Warm. Phenology was not strongly affected by soil temperature, and root and shoot growth did not usually peak simultaneously. Short root mortality increased strongly in ECLW and decreased in EWLC after the soil temperature switch. Long root longevity was not significantly affected but long root growth ceased earliest in ECLW. Soil warming increased foliar nutrient contents. Growth dynamics were not solely driven by soil temperature, but resource competition also played a significant role. The study showed the importance of soil temperature for fine root dynamics not only through root growth but also via root mortality, as soil warming increased mortality even more than growth. Soil temperature has complex effects on tree and soil functioning, which further affects carbon dynamics in forest ecosystems that have a climate feedback.


Asunto(s)
Ecosistema , Suelo , Betula , Árboles , Temperatura , Plantones , Raíces de Plantas
2.
Tree Physiol ; 42(12): 2502-2520, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-35939341

RESUMEN

The aboveground parts of boreal forest trees grow earlier in the growing season, the roots mostly later. The idea was to examine whether root growth followed soil temperature, or whether shoot growth also demanded most resources in the early growing season (soil temperature vs internal sink strengths for resources). The linkage between air and soil temperature was broken by switching the soil temperature. We aimed here to identify the direct effects of different soil temperature patterns on physiology, leaf anatomy and their interactions, and how they relate to the control of the growth dynamics of silver birch (Betula pendula Roth). Sixteen 2-year-old seedlings were grown in a controlled environment for two 14-week simulated growing seasons (GS1, GS2). An 8-week dormancy period interposed the GSs. In GS2, soil temperature treatments were applied: constant 10 °C (Cool), constant 18 °C (Warm), early growing season at 10 °C switched to 18 °C later (Early Cool Late Warm) and 18 °C followed by 10 °C (Early Warm Late Cool) were applied during GS2. The switch from cool to warm enhanced the water status, net photosynthesis, chlorophyll content index, effective yield of photosystem II (ΔF/Fm') and leaf expansion of the seedlings. Warm treatment increased the stomatal number per leaf. In contrast, soil cooling increased glandular trichomes. This investment in increasing the chemical defense potential may be associated with the decreased growth in cool soil. Non-structural carbohydrates were accumulated in leaves at a low soil temperature showing that growth was more hindered than net photosynthesis. Leaf anatomy differed between the first and second leaf flush of silver birch, which may promote tree fitness in the prevailing growing conditions. The interaction of birch structure and function changes with soil temperature, which can further reflect to ecosystem functioning.


Asunto(s)
Ecosistema , Suelo , Betula/fisiología , Hojas de la Planta/fisiología , Árboles/fisiología , Fotosíntesis/fisiología , Temperatura , Plantones/fisiología
3.
Tree Physiol ; 41(7): 1143-1160, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33440427

RESUMEN

Winter precipitation and soil freeze-thaw events have been predicted to increase in boreal regions with climate change. This may expose tree roots to waterlogging (WL) and soil freezing (Fr) more than in the current climate and therefore affect tree growth and survival. Using a whole-tree approach, we studied the responses of silver birch (Betula pendula Roth.) saplings, growing in mineral soil, to 6-week Fr and WL in factorial combinations during dormancy, with accompanying changes in soil gas concentrations. Physiological activation (dark-acclimated chlorophyll fluorescence and chlorophyll content index) and growth of leaves and shoot elongation and stem diameter growth started earlier in Fr than NoFr (soil not frozen). The starch content of leaves was temporarily higher in Fr than NoFr in the latter part of the growing season. Short and long root production and longevity decreased, and mortality increased by soil Fr, while there were no significant effects of WL. Increased fine root damage was followed by increased compensatory root growth. At the beginning of the growing season, stem sap flow increased fastest in Fr + WL, with some delay in both NoWL (without WL) treatments. At the end of the follow-up growing season, the hydraulic conductance and impedance loss factor of roots were higher in Fr than in NoFr, but there were no differences in above- and belowground biomasses. The concentration of soil carbon dioxide increased and methane decreased by soil Fr at the end of dormancy. At the beginning of the growing season, the concentration of nitrous oxide was higher in WL than in NoWL and higher in Fr than in NoFr. In general, soil Fr had more consistent effects on soil greenhouse gas concentrations than WL. To conclude, winter-time WL alone is not as harmful for roots as WL during the growing season.


Asunto(s)
Betula , Suelo , Congelación , Gases , Árboles
4.
Tree Physiol ; 40(6): 782-795, 2020 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-32186729

RESUMEN

Arbuscular mycorrhizas (AMs) prevail in warm and dry climates and ectomycorrhizas (EMs) in cold and humid climates. We suggest that the fungal symbionts benefit their host plants especially in the corresponding conditions. The hypothesis tested was that AM plants are more drought-resistant than EM or nonmycorrhizal (NM) plants. Grey alder (Alnus incana (L.) Moench) seedlings were inoculated with two species of either AM or EM fungi or none. In one controlled-environment experiment, there was a watering and a drought treatment. Another set of seedlings were not watered until permanent wilting. The AM plants were somewhat smaller than EM and NM, and at the early stage of the drought treatment, the soil-moisture content was slightly higher in the AM pots. Shoot water potential was highest in the AM treatment during severe drought, while stomatal conductance and photosynthesis did not show a mycorrhizal effect. In the lethal-drought set, the AM plants maintained their leaves longer than EM and NM plants, and the AM seedlings survived longer than NM seedlings. Foliar phosphorus and sulfur concentrations remained higher in AM plants than EM or NM, but potassium, copper and iron increased in EM during drought. The root tannin concentration was lower in AM than EM and drought doubled it. Although the difference in drought resistance was not large, the hypothesis was supported by the better performance of AM plants during a severe short-term drought. Sustained phosphorus nutrition during drought in AM plants was a possible reason for this. Moreover, the higher foliar sulfur and lower metal-nutrient concentrations in AM may reflect differences in nutrient uptake or (re)translocation during drought, which merit further research. The much larger tannin concentrations in EM root systems than AM did not appear to protect the EM plants from drought. The differential tannin accumulation in AM and EM plants needs further attention.


Asunto(s)
Alnus , Micorrizas , Sequías , Raíces de Plantas , Plantones , Simbiosis
5.
Tree Physiol ; 40(7): 869-885, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32186742

RESUMEN

Future climate scenarios for the boreal zone project increasing temperatures and precipitation, as well as extreme weather events such as heavy rain during the growing season. This can result in more frequent short-term waterlogging (WL) leading to unfavorable conditions for tree roots. In addition, it is decisive whether short-term WL periods during the growing season occur continuously or periodically. We assessed the effects of short-termed WL on 4-year-old Scots pine (Pinus sylvestris L.) saplings after shoot elongation started. Waterlogging (WL) lasted either continuously for 2.5 weeks (ContWL) or noncontinuously for 5 weeks, consisting of three repeated 1-week-interval WL periods (IntWL). Both treatments resulted in the same duration of soil anoxia. We studied soil gases, root and shoot growth and physiology, and root survival probability and longevity during the experiment. In the final harvest, we determined shoot and root biomass and hydraulic conductance and electrical impedance spectra of the root systems. Soil CO2 and CH4 concentrations increased immediately after WL onset and O2 decreased until anoxia. Waterlogging decreased fine root survival probability, but there was no difference between WL treatments. Shoot growth suffered more from ContWL and root growth more from IntWL. Needle concentrations of pinitol increased in the WL saplings, indicating stress. No WL effects were observed in photosynthesis and chlorophyll fluorescence. Increased starch concentration in needles by WL may be due to damaged roots and thus a missing belowground sink. Electrical impedance indicated suffering of WL saplings, although root hydraulic conductance did not differ between the treatments. Oxidative stress of short-term and interval WL can have long-lasting effects on shoot and root growth and the physiology of Scots pine. We conclude that even short-term WL during the growing season is a stress factor, which will probably increase in the future and can affect carbon allocation and dynamics in boreal forests.


Asunto(s)
Pinus sylvestris , Inundaciones , Raíces de Plantas , Estaciones del Año , Suelo
6.
Plant Cell Environ ; 43(6): 1513-1527, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32167576

RESUMEN

The photoreceptors UV RESISTANCE LOCUS 8 (UVR8) and CRYPTOCHROMES 1 and 2 (CRYs) play major roles in the perception of UV-B (280-315 nm) and UV-A/blue radiation (315-500 nm), respectively. However, it is poorly understood how they function in sunlight. The roles of UVR8 and CRYs were assessed in a factorial experiment with Arabidopsis thaliana wild-type and photoreceptor mutants exposed to sunlight for 6 or 12 hr under five types of filters with cut-offs in UV and blue-light regions. Transcriptome-wide responses triggered by UV-B and UV-A wavelengths shorter than 350 nm (UV-Asw ) required UVR8 whereas those induced by blue and UV-A wavelengths longer than 350 nm (UV-Alw ) required CRYs. UVR8 modulated gene expression in response to blue light while lack of CRYs drastically enhanced gene expression in response to UV-B and UV-Asw . These results agree with our estimates of photons absorbed by these photoreceptors in sunlight and with in vitro monomerization of UVR8 by wavelengths up to 335 nm. Motif enrichment analysis predicted complex signaling downstream of UVR8 and CRYs. Our results highlight that it is important to use UV waveband definitions specific to plants' photomorphogenesis as is routinely done in the visible region.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas Cromosómicas no Histona/metabolismo , Criptocromos/metabolismo , Rayos Ultravioleta , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Motivos de Nucleótidos/genética , Fotones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Nicotiana/metabolismo
9.
J Exp Bot ; 70(18): 4975-4990, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31100755

RESUMEN

Cryptochromes (CRYs) and UV RESISTANCE LOCUS 8 (UVR8) photoreceptors perceive UV-A/blue (315-500 nm) and UV-B (280-315 nm) radiation in plants, respectively. While the roles of CRYs and UVR8 have been studied in separate controlled-environment experiments, little is known about the interaction between these photoreceptors. Here, Arabidopsis wild-type Ler, CRYs and UVR8 photoreceptor mutants (uvr8-2, cry1cry2 and cry1cry2uvr8-2), and a flavonoid biosynthesis-defective mutant (tt4) were grown in a sun simulator. Plants were exposed to filtered radiation for 17 d or for 6 h, to study the effects of blue, UV-A, and UV-B radiation. Both CRYs and UVR8 independently enabled growth and survival of plants under solar levels of UV, while their joint absence was lethal under UV-B. CRYs mediated gene expression under blue light. UVR8 mediated gene expression under UV-B radiation, and in the absence of CRYs, also under UV-A. This negative regulation of UVR8-mediated gene expression by CRYs was also observed for UV-B. The accumulation of flavonoids was also consistent with this interaction between CRYs and UVR8. In conclusion, we provide evidence for an antagonistic interaction between CRYs and UVR8 and a role of UVR8 in UV-A perception.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Criptocromos/metabolismo , Luz Solar , Arabidopsis/efectos de la radiación , Rayos Ultravioleta
10.
Tree Physiol ; 39(5): 805-818, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30753688

RESUMEN

Soil waterlogging is predicted to increase in the future climate in boreal regions due to increased precipitation. Snowmelt periods in winter may also become more common and further increase the amount of water in soil. It is not well known how waterlogging and soil freezing during winter affect the physiology, phenology and growth of trees. Our aim was to study the below- and aboveground responses of Scots pine (Pinus sylvestris L.) saplings to waterlogging (WL) in frozen (Fr) and unfrozen (NoFr) soils in a growth chamber experiment. The soil was either -2 °C or +2 °C and either waterlogged or not in a split-plot design for 6 weeks during dormancy, with similar air conditions in all treatments, which were Fr + WL, NoFr + WL, Fr + NoWL and NoFr + NoWL. Needles showed a shift towards a deeper dormancy in frozen than unfrozen soil in terms of chlorophyll fluorescence (Fv/Fm), water potential and apoplastic electrical resistance. In spring, initiation of shoot elongation started earlier if the soil was frozen during dormancy. In Fr + WL, initiation of root growth was delayed by 20 days compared with other treatments; after that, the root growth peaked at the same time as needle elongation. Needles remained smaller in Fr + WL than in the other treatments, indicating that roots formed a strong sink for carbon. Shoot and root biomass were not negatively affected by waterlogging if the soil remained unfrozen. In Fr + WL, survival and growth capacity of new terminal and whorl buds, the number of bud scales and the number of dwarf shoots were reduced. We conclude that soil freezing on sites prone to waterlogging should be considered in management of boreal forests, especially in the face of predicted climate change.


Asunto(s)
Inundaciones , Congelación , Pinus sylvestris/crecimiento & desarrollo , Suelo , Finlandia , Latencia en las Plantas , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo
11.
Tree Physiol ; 39(4): 526-535, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30371901

RESUMEN

Ectomycorrhizal trees are common in the cold regions of the world, yet the role of the mycorrhizal symbiosis in plant cold tolerance is poorly known. Moreover, the standard methods for testing plant frost hardiness may not be adequate for roots and mycorrhizas. The aims of this study were to compare the frost hardiness of mycorrhizal and non-mycorrhizal Scots pine (Pinus sylvestris L.) seedlings and to test the use of reverse-flow root hydraulic conductance (Kr) measurement for root frost hardiness determination. Mycorrhizal (Hebeloma sp. or Suillus luteus) and non-mycorrhizal seedlings were grown in controlled-environment chambers for 13 weeks. After this, half of the plants were allotted to a non-hardening treatment (long day and high temperature, same as during the preceding growing season) and the other half to a hardening (short day and low temperature) 'autumn' treatment for 4 weeks. The intact seedlings were exposed to whole-plant freezing tests and the needle frost hardiness was measured by relative electrolyte leakage (REL) method. The seedlings were grown for three more weeks for visual damage assessment and Kr measurements using a high-pressure flow meter (HPFM). Mycorrhizas did not affect the frost hardiness of seedlings in either hardening treatment. The effect of the hardening treatment on frost hardiness was shown by REL and visual assessment of the aboveground parts as well as Kr of roots. Non-mycorrhizal plants were larger than mycorrhizal ones while nitrogen and phosphorus contents (per unit dry mass) were similar in all mycorrhiza treatments. In plants with no frost exposure, the non-mycorrhizal treatment had higher Kr. There was no mycorrhizal effect on plant frost hardiness when nutritional effects were excluded. Further studies are needed on the role of mycorrhizas especially in the recovery of growth and nutrient uptake in cold soils in the spring. The HPFM is useful novel method for assessment of root damage.


Asunto(s)
Hebeloma/fisiología , Micorrizas/fisiología , Pinus sylvestris/fisiología , Frío , Congelación , Pinus sylvestris/microbiología , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Transpiración de Plantas , Estaciones del Año , Plantones/microbiología , Plantones/fisiología , Simbiosis , Árboles
12.
Tree Physiol ; 37(6): 767-778, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28338895

RESUMEN

Increased risk of soil waterlogging in winter and spring at northern latitudes will potentially affect forest production in the future. We studied gas exchange, chlorophyll content index, chlorophyll fluorescence, nutrient concentration and biomass accumulation in 1-year-old silver (Betula pendula Roth) and pubescent birch (Betula pubescens Ehrh.) seedlings. We hypothesized that B. pubescens has different physiological mechanisms that make it tolerate waterlogging better than B. pendula. The treatments were: (i) no waterlogging throughout the experiment; (ii) 4-week waterlogging during dormancy (dormancy waterlogging 'DW'); (iii) 4-week waterlogging during the early growing season (growth waterlogging 'GW'); and (iv) 4-week DW followed by 4-week GW during the early growing season ('DWGW'). Stomatal conductance and light-saturated net assimilation rate were reduced by GW in both species, and in B. pubescens also by DW. However, recovery was seen during the follow-up growing season. In B. pendula, DW, GW and DWGW temporarily resulted in reduced stem biomass, and GW and DWGW caused reduced leaf biomass. In B. pubescens, the stem biomass was decreased in GW and DWGW. Leaf nitrogen (N) and phosphorus (P) concentrations were generally low, and increased by GW, while potassium, calcium, magnesium and to some extent, boron and zinc concentrations decreased in both species and additionally manganese in B. pendula. The increases in N and P are mostly due to a concentration effect due to smaller leaf biomass, yet suggest that their uptake was not impaired. The decreases in cation concentrations are likely to be connected to impaired root functioning, which was not yet fully recovered from GW. We conclude that morphological acclimation to waterlogging of the leaves and roots rather than photosynthesis explains why B. pubescens is able to grow better in wetter areas than B. pendula.


Asunto(s)
Aclimatación , Betula/crecimiento & desarrollo , Betula/fisiología , Fotosíntesis , Agua , Biomasa , Latencia en las Plantas , Hojas de la Planta/fisiología , Raíces de Plantas/fisiología , Estaciones del Año
13.
Tree Physiol ; 36(1): 86-98, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26420790

RESUMEN

The warmer winters of the future will increase snow-melt frequency and rainfall, thereby increasing the risk of soil waterlogging and its effects on trees in winter and spring at northern latitudes. We studied the morphology of roots and leaves of 1-year-old silver birch (Betula pendula Roth) and pubescent birch (Betula pubescens Ehrh.) seedlings exposed to waterlogging during dormancy or at the beginning of the growing season in a growth-chamber experiment. The experiment included 4-week dormancy (Weeks 1-4), a 4-week early growing season (Weeks 5-8) and a 4-week late growing season (Weeks 9-12). The treatments were: (i) no waterlogging, throughout the experiment ('NW'); (ii) 4-week waterlogging during dormancy (dormancy waterlogging 'DW'); (iii) 4-week waterlogging during the early growing season (growth waterlogging 'GW'); and (iv) 4-week DW followed by 4-week GW during the early growing season ('DWGW'). Dormancy waterlogging affected the roots of silver birch and GW the roots and leaf characteristics of both species. Leaf area was reduced in both species by GW and DWGW. In pubescent birch, temporarily increased formation of thin roots was seen in root systems of GW seedlings, which suggests an adaptive mechanism with respect to excess soil water. Additionally, the high density of non-glandular trichomes and their increase in DWGW leaves were considered possible morphological adaptations to excess water in the soil, as was the constant density of stem lenticels during stem-diameter growth. The higher density in glandular trichomes of DWGW silver birch suggests morphological acclimation in that species. The naturally low density of non-glandular trichomes, low density of stem lenticels in waterlogged seedlings and decrease in root growth seen in DWGW and DW silver birch seedlings explain, at least partly, why silver birch grows more poorly relative to pubescent birch in wet soils.


Asunto(s)
Betula/anatomía & histología , Latencia en las Plantas , Árboles/anatomía & histología , Betula/crecimiento & desarrollo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/crecimiento & desarrollo , Plantones/anatomía & histología , Plantones/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Agua
14.
Mycorrhiza ; 25(5): 377-86, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25404213

RESUMEN

Survival and functioning of mycorrhizal associations at low temperatures are not known well. In an earlier study, ectomycorrhizas did not affect the frost hardiness of Scots pine (Pinus sylvestris L.) roots, but here we studied whether differential nutrient availability would change the result and additionally, alter frost hardiness aboveground. The aim in this experiment was to compare the frost hardiness of roots and needles of mycorrhizal (Hebeloma sp.) and non-mycorrhizal Scots pine seedlings raised using two fertilization treatments and two cold-hardening regimes. The fertilization treatments were low (LF) and high (HF) application of a complete nutrient solution. Three hundred mycorrhizal and non-mycorrhizal seedlings were cultivated in growth chambers in four blocks for 16 weeks. For the first 9 weeks, the seedlings grew in long-day and high-temperature (LDHT) with low fertilization and then they were raised for 3 weeks in LDHT with either low or high fertilization. After this, half of the plants in each treatment combination remained in LDHT, and half were transferred to short-day and low-temperature (SDLT) conditions to cold acclimatize. The frost hardiness of the roots and needles was assessed using controlled freezing tests followed by electrolyte leakage tests (REL). Mycorrhizal roots were slightly more frost hardy than non-mycorrhizal roots, but only in the growing-season conditions (LDHT) in low-nutrient treatment. In LDHT and LF, the frost hardiness of the non-mycorrhizal roots was about -9 °C, and that of the non-mycorrhizal HF roots and the mycorrhizal roots in both fertilization levels was about -11 °C. However, no difference was found in the roots within the SDLT regime, and in needles, there was no difference between mycorrhizal and fertilization treatments. The frost hardiness of needles increased by SDLT treatment, being -8.5 and -14.1 °C in LDHT and SDLT, respectively. The dry mass of roots, stems, and needles was lower in LF than in HF and lower in SDLT than in LDHT. Mycorrhizal treatment did not affect the dry mass or its allocation. Although the mycorrhizal roots were slightly more frost hardy in the growing-season conditions, this is not likely to have significance in the field.


Asunto(s)
Frío , Micorrizas/fisiología , Pinus sylvestris/crecimiento & desarrollo , Pinus sylvestris/microbiología , Biomasa , Congelación , Valor Nutritivo
15.
Mycorrhiza ; 23(7): 551-9, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23558517

RESUMEN

The frost hardiness (FH) of mycorrhizal [ectomycorrhizal (ECM)] and non-mycorrhizal (NM) Scots pine (Pinus sylvestris) seedlings was studied to assess whether mycorrhizal symbiosis affected the roots' tolerance of below-zero temperatures. ECM (Hebeloma sp.) and NM seedlings were cultivated in a growth chamber for 18 weeks. After 13 weeks' growth in long-day and high-temperature (LDHT) conditions, a half of the ECM and NM seedlings were moved into a chamber with short-day and low-temperature (SDLT) conditions to cold acclimate. After exposures to a range of below-zero temperatures, the FH of the roots was assessed by means of the relative electrolyte leakage test. The FH was determined as the inflection point of the temperature-response curve. No significant difference was found between the FH of mycorrhizal and non-mycorrhizal roots in LDHT (-8.9 and -9.8 °C) or SDLT (-7.5 and -6.8 °C). The mycorrhizal treatment had no significant effect on the total dry mass, the allocation of dry mass among the roots and needles or nutrient accumulation. The mycorrhizal treatment with Hebeloma sp. did not affect the FH of Scots pine in this experimental setup. More information is needed on the extent to which mycorrhizas tolerate low temperatures, especially with different nutrient contents and different mycorrhiza fungi.


Asunto(s)
Hebeloma/fisiología , Micorrizas/fisiología , Pinus sylvestris/microbiología , Pinus sylvestris/fisiología , Frío , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Simbiosis
16.
Tree Physiol ; 31(11): 1251-61, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22084021

RESUMEN

Boron (B) is an essential micronutrient whose deficiency is common both in agriculture and in silviculture. Boron deficiency impairs the growth of plants and affects many metabolic processes like carbohydrate metabolism. Boron deficiency and also excess B may decrease the sink demand by decreasing the growth and sugar transport which may lead to the accumulation of carbohydrates and down-regulation of photosynthesis. In this study, we investigated the effects of B nutrition on the soluble and storage carbohydrate concentrations of summer leaves and autumn buds in a deciduous tree species, Betula pendula Roth. In addition, we investigated the changes in the pools of condensed tannins between summer and autumn harvests. One-year-old birch seedlings were fertilized with a complete nutrient solution containing three different levels of B: 0, 30 and 100% of the standard level for complete nutrient solution. Half of the seedlings were harvested after summer period and another half when leaves abscised. The highest B fertilization level (B100) caused an accumulation of starch and a decrease in the concentrations of hexoses (glucose and fructose) in summer leaves, whereas in the B0 seedlings, hexoses (mainly glucose) accumulated and starch decreased. These changes in carbohydrate concentrations might be related to the changes in the sink demand since the autumn growth was the smallest for the B100 seedlings and largest for the B30 seedlings that did not accumulate carbohydrates. The autumn buds of B30 seedlings contained the lowest levels of glucose, glycerol, raffinose and total polyols, which was probably due to the dilution effect of the deposition of other substances like phenols. Condensed tannins accumulated in high amounts in the birch stems during the hardening of seedlings and the largest accumulation was detected in the B30 treatment. Our results suggest that B nutrition of birch seedlings affects the carbohydrate and phenol metabolism and may play an important role in the hardening process of the seedlings.


Asunto(s)
Betula/metabolismo , Boro/metabolismo , Metabolismo de los Hidratos de Carbono , Carbono/metabolismo , Fotosíntesis , Estructuras de las Plantas/metabolismo , Proantocianidinas/metabolismo , Betula/crecimiento & desarrollo , Senescencia Celular , Fertilizantes , Hexosas/metabolismo , Estructuras de las Plantas/crecimiento & desarrollo , Estaciones del Año , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Almidón/metabolismo , Árboles
17.
J Chem Ecol ; 37(5): 460-71, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21487920

RESUMEN

Boron (B) deficiency is a common micronutrient deficiency that has been reported to affect the phenolic metabolism of plants. Thus, it may play a role in defense against herbivorous animals. However, the role of B in a plant's resistance to herbivores has not received any particular attention from researchers. In this study, we tested the effects of B nutrition 1) on the biochemical and mechanical defenses of birches and the growth of seedlings, and 2) the resistance of seedlings to larvae of the autumnal moth, Epirrita autumnata. Boron fertilization improved the resistance of birch, which was shown as reduced pupal weight of the herbivore. However, B fertilized trees suffered from heavier defoliation than unfertilized ones due to compensation feeding of larvae. The growth of the seedlings was diminished, and several biochemical changes occurred in leaves of herbivore seedlings, and B also played a role in these changes. Polyphenoloxidases (PPOs) and peroxidases (PODs) and their substrates, chlorogenic acids, were induced by herbivory in B fertilized seedlings but not in unfertilized seedlings. The lower pupal weights and increased consumption of the herbivores were probably linked to the plants' phenoloxidase-mediated production of reactive quinones, which decrease the nutritive value. Herbivory upon new stems led to an increase in the number of resin glands that provide defense against mammalian herbivores. Herbivory also had a substantially negative effect on B concentration in leaves of B fertilized seedlings. We postulate that B nutrition of trees may play a significant role in the induced defense of birches.


Asunto(s)
Betula/metabolismo , Betula/parasitología , Boro/metabolismo , Interacciones Huésped-Parásitos , Mariposas Nocturnas/fisiología , Agricultura , Animales , Betula/enzimología , Betula/crecimiento & desarrollo , Catecol Oxidasa/metabolismo , Larva/fisiología , Peroxidasa/metabolismo , Proteínas de Plantas/metabolismo , Plantones/enzimología , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Plantones/parasitología
18.
J Exp Bot ; 62(1): 351-8, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20797994

RESUMEN

Information on plant roots is increasingly needed for understanding and managing plants under various environmental conditions, including climate change. Several methods have been developed to study fine roots but they are either destructive or cumbersome, or may not be suitable for studies of fine root functionality. Electrical impedance, resistance, and capacitance have been proposed as possible non-destructive measures for studying roots. Their use is limited by a lack of knowledge concerning the electrical circuit of the system. Electrical impedance spectroscopy (EIS) was used for hydroponically raised willows (Salix schwerinii) to estimate the root system size. The impedance spectra were investigated in three experimental set-ups and the corresponding appropriate lumped models were formulated. The fit of the proposed lumped models with the measured impedance spectra data was good. The model parameters were correlated with the contact area of the roots and/or stems raised in the hydroponic solution. The EIS method proved a useful non-destructive method for assessing root surface area. This work may be considered to be a new methodological contribution to understanding root systems and their functions in a non-destructive manner.


Asunto(s)
Espectroscopía Dieléctrica/métodos , Raíces de Plantas/química , Salix/química , Impedancia Eléctrica
19.
Mycorrhiza ; 21(3): 155-65, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20526634

RESUMEN

Fungi are usually thought not to have a boron (B) requirement. It is not known if mycorrhizas take up B from low concentrations that are common in forest soils, as fungi might also immobilise B. Here, we studied the B concentrations in sporophores of 49 ectomycorrhizal and 10 saprotrophic fungi to assess whether B is translocated in mycelium or not. Additionally, P and metal concentrations were measured for comparison. Variability both within species and between species was very large, as the lowest measured B concentration was 0.01 mg kg(-1) in Amanita muscaria, and the highest was 280 mg kg(-1) in Paxillus involutus. There was no clear difference between saprotrophic and mycorrhizal fungi. The majority of species did not accumulate B at more than 0.01-3 mg kg(-1), but there were some species that consistently had median concentration values higher than 5-6 mg kg(-1) and much higher maximum values, particularly Paxillus involutus, Lactarius necator and several Russula species. Most species increased their B concentration in B fertilised plots, but there were exceptions, particularly Rozites caperatus and Lactarius camphoratus. Boron concentrations did not correlate with those of other elements. In conclusion, B is translocated in the mycelia of most of the studied species. The differences between species may be due to differences in their water use, or carbohydrates used in translocation. It remains to be studied, if B concentrations in mycorrhizas or mycelia in soil are in the same order of magnitude as the larger ones found here, and if this has any effects on the host plants.


Asunto(s)
Boro/metabolismo , Hongos/metabolismo , Micorrizas/metabolismo , Oligoelementos/metabolismo , Transporte Biológico , Boro/análisis , Hongos/química , Hongos/crecimiento & desarrollo , Micelio/química , Micelio/metabolismo , Micorrizas/química , Micorrizas/crecimiento & desarrollo , Esporas Fúngicas/química , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/metabolismo , Oligoelementos/análisis
20.
Mycorrhiza ; 21(2): 71-90, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21140277

RESUMEN

There is plenty of evidence for improved nutrient acquisition by ectomycorrhizas in trees; however, their role in water uptake is much less clear. In addition to experiments showing improved performance during drought by mycorrhizal plants, there are several studies showing reduced root hydraulic conductivity and reduced water uptake in mycorrhizal roots. The clearest direct mechanism for increased water uptake is the increased extension growth and absorbing surface area, particularly in fungal species with external mycelium of the long-distance exploration type. Some studies have found increased aquaporin function and, consequently, increased root hydraulic conductivity in ectomycorrhizal plants while other studies showed no effect of ectomycorrhizal associations on root water flow properties. The aquaporin function of the fungal hyphae is also likely to be important for the uptake of water by the ectomycorrhizal plant, but more work needs to be done in this area. The best-known indirect mechanism for mycorrhizal effects on water relations is improved nutrient status of the host. Others include altered carbohydrate assimilation via stomatal function, possibly mediated by changes in growth regulator balance; increased sink strength in mycorrhizal roots; antioxidant metabolism; and changes in osmotic adjustment. None of these possibilities has been sufficiently explored. The mycorrhizal structure may also reduce water movement because of different fine root architecture (thickness), cell wall hydrophobicity or the larger number of membranes that water has to cross on the way from the soil to the xylem. In future studies, pot experiments comparing mycorrhizal and nonmycorrhizal plants will still be useful in studying well-defined physiological details. However, the quantitative importance of ectomycorrhizas for tree water uptake and water relations can only be assessed by field studies using innovative approaches. Hydraulic redistribution can support nutrient uptake during prolonged dry periods. In large trees with deep root systems, it may turn out that the most important function of mycorrhizas during drought is to facilitate nutrient acquisition.


Asunto(s)
Hifa/metabolismo , Micorrizas/metabolismo , Árboles/metabolismo , Árboles/microbiología , Agua/metabolismo , Adaptación Fisiológica , Sequías , Hongos/clasificación , Hongos/genética , Hongos/fisiología , Genotipo , Micorrizas/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Plantones/metabolismo , Plantones/microbiología , Plantones/fisiología , Árboles/fisiología , Xilema/metabolismo , Xilema/microbiología , Xilema/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...