Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(4): e26015, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38420383

RESUMEN

Relying on the middle line of south-to-north water diversion project ning storage reservoir has built the construction load impact assessment project, the study through the analysis of field conditions select reasonable monitoring section and monitoring scheme, the late monitoring, the results can reflect the overall deformation of the wall and stress, and use in advance in the wall, monitoring instruments, to the typical section of field deformation, pressure, strain and stress, automatic oblique monitoring results to introduce the stress strain of the whole wall. Research results: The soil pressure showed the larger on the outside and the slightly smaller on the inside; Concrete strain relative to the initial state in the direction of vertical wall and vertical strain increment is larger, The strain increment along the wall direction is small; The data of the reinforcement stress gauge are all negative, And the quantity value of the inner steel bar gauge continues to increase, The monitoring value of the outer steel bar gauge has a tendency to decrease gradually; Small displacement of the plastic concrete walls, Large displacement of reinforced concrete walls, And the value along the wall for the small law; The inclination displacement value of monitoring section 2-2 and 3-3 gradually decreases with the continuous construction, The displacement value of monitoring 1-1 section also becomes smaller in the first and middle stages of construction, But in the late construction, This shows that the horizontal displacement of the monitoring 1-1 section in the later construction period has a recovery trend; The top settlement value is larger at the 1st-3rd wall, About 6 mm-10mm, The 4-6 pin is smaller, About 4 mm-5mm, Article 7-10, the pin is directly crushed by the vehicle, Its value is approximately 6 mm-8mm.

2.
ACS Omega ; 8(3): 3385-3395, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36713719

RESUMEN

The adhesion of bacteria on clay surfaces strongly affected their migration and distribution in soil and water. Bacterial adhesion experiments on the Na-montmorillonite (Na-MMT) surface were conducted to determine the role of Na-MMT in the bacterial adhesion process and to prove the validity of the isotherm and kinetic theory for the bacterial surface adhesion in the presence of Ca2+ ions. Batch adhesion experiments with bacteria on the Na-MMT surface were carried out with varying time frames, temperatures, bacterial concentrations, and Ca2+ ion concentrations. The adhesion capacity of Na-MMT significantly correlated with the Ca2+ ion concentration, temperature, time frame, and bacterial concentration when Ca2+ ions were present. The adhesion morphology of the bacteria onto the Na-MMT surface, observed through the zeta-potential and atomic force microscopy (AFM), additionally demonstrated that the bacterial adhesion onto the Na-MMT surface was dominated by the nonelectrostatic force.

3.
Biotechnol Biofuels Bioprod ; 15(1): 115, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289523

RESUMEN

BACKGROUND: Microalgae can absorb CO2 during photosynthesis, which causes the aquatic environmental pH to rise. However, the pH is reduced when microalga Euglena gracilis (EG) is cultivated under photoautotrophic conditions. The mechanism behind this unique phenomenon is not yet elucidated. RESULTS: The present study evaluated the growth of EG, compared to Chlorella vulgaris (CV), as the control group; analyzed the dissolved organic matter (DOM) in the aquatic environment; finally revealed the mechanism of the decrease in the aquatic environmental pH via comparative metabolomics analysis. Although the CV cell density was 28.3-fold that of EG, the secreted-DOM content from EG cell was 49.8-fold that of CV (p-value < 0.001). The main component of EG's DOM was rich in humic acids, which contained more DOM composed of chemical bonds such as N-H, O-H, C-H, C=O, C-O-C, and C-OH than that of CV. Essentially, the 24 candidate biomarkers metabolites secreted by EG into the aquatic environment were acidic substances, mainly lipids and lipid-like molecules, organoheterocyclic compounds, organic acids, and derivatives. Moreover, six potential critical secreted-metabolic pathways were identified. CONCLUSIONS: This study demonstrated that EG secreted acidic metabolites, resulting in decreased aquatic environmental pH. This study provides novel insights into a new understanding of the ecological niche of EG and the rule of pH change in the microalgae aquatic environment.

5.
Mar Drugs ; 20(8)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-36005499

RESUMEN

The carotenoids, including lycopene, lutein, astaxanthin, and zeaxanthin belong to the isoprenoids, whose basic structure is made up of eight isoprene units, resulting in a C40 backbone, though some of them are only trace components in Euglena. They are essential to all photosynthetic organisms due to their superior photoprotective and antioxidant properties. Their dietary functions decrease the risk of breast, cervical, vaginal, and colorectal cancers and cardiovascular and eye diseases. Antioxidant functions of carotenoids are based on mechanisms such as quenching free radicals, mitigating damage from reactive oxidant species, and hindering lipid peroxidation. With the development of carotenoid studies, their distribution, functions, and composition have been identified in microalgae and higher plants. Although bleached or achlorophyllous mutants of Euglena were among the earliest carotenoid-related microalgae under investigation, current knowledge on the composition and biosynthesis of these compounds in Euglena is still elusive. This review aims to overview what is known about carotenoid metabolism in Euglena, focusing on the carotenoid distribution and structure, biosynthesis pathway, and accumulation in Euglena strains and mutants under environmental stresses and different culture conditions. Moreover, we also summarize the potential applications in therapy preventing carcinogenesis, cosmetic industries, food industries, and animal feed.


Asunto(s)
Microalgas , Animales , Antioxidantes/metabolismo , Carotenoides/metabolismo , Femenino , Luteína/metabolismo , Microalgas/genética , Microalgas/metabolismo , Zeaxantinas/metabolismo
6.
Front Nutr ; 9: 864565, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35811960

RESUMEN

Euglena gracilis, a single-celled microalga with various trophic growth styles under different cultivation conditions, contains nutrients, such as ß-1,3-glucans, essential amino acids, fatty acids, vitamins, and minerals. It has recently attracted attention as a new health food. Among them, ß-1,3-glucans, paramylon of Euglena, is an insoluble dietary fiber and is well known as an immune booster, attenuator of obesity and diabetes, reducer of acute liver injury, and suppressor of atopic dermatitis, and other chronic inflammatory disorders. Recently, evidence has appeared for the positive health effects of foods, food ingredients, or biochemical compounds derived from several other microalgae, such as Chlorella, Spirulina, Dunaliella, Phaeodactylum, and Pavlova. Until most recently, the prebiotic activity of Euglena and paramylon was reported. Emerging prospects of microalgae as prebiotics were well summarized, but the mechanisms behind the bacterial growth promotion by microalgae are not elucidated yet. Thus, we evaluated the prebiotic prospects of both autotrophic and heterotrophic Euglena on six different Lactobacillus. What's more, the stimulated mechanism was revealed by bacterial culture medium metabolomic analysis. This study could widen the knowledge about the prebiotic activity of Euglena as a next-generation prebiotic and other microalgae-derived compounds as potential health foods.

7.
Front Bioeng Biotechnol ; 10: 882391, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464731

RESUMEN

Euglena is a genus of single-celled eukaryotes that show both plant- and animal-like characteristics. Euglena gracilis, a model species, is of great academic interest for studying endosymbiosis and chloroplast development. As an industrial species, E. gracilis is also of primary biotechnological and economic importance as high value-added food, medicine, and cosmetic and high-quality feedstock for jet-fuel production because of its cells containing many high-value products, such as vitamins, amino acids, pigments, unsaturated fatty acids, and carbohydrate paramylon, as metabolites. For more than half a century, E. gracilis has been used as an industrial biotechnology platform for fundamental biology research, mainly exploring relevant physiological and biochemical method studies. Although many researchers focused on genetic engineering tools for E. gracilis in recent years, little progress has been achieved because of the lack of high-quality genome information and efficient techniques for genetic operation. This article reviewed the progress of the genetic transformation of E. gracilis, including methods for the delivery of exogenous materials and other advanced biotechnological tools for E. gracilis, such as CRISPR and RNA interference. We hope to provide a reference to improve the research in functional genomics and synthetic biology of Euglena.

8.
Front Bioeng Biotechnol ; 10: 827513, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35402390

RESUMEN

Euglena comprises over 200 species, of which Euglena gracilis is a model organism with a relatively high fatty acid content, making it an excellent potential source of biodiesel. This study isolated and characterized a new strain named E. gracilis 815. E. gracilis 815 cells were cultivated under light and dark conditions, with either ethanol or glucose as an external carbon source and an autotrophic medium as control. To achieve maximum active substances within a short period i.e., 6 days, the effects of the light condition and carbon source on the accumulation of bioactive ingredients of E. gracilis 815 were explored, especially fatty acids. In comparison with the industrially used E. gracilis Z strain, E. gracilis 815 exhibited high adaptability to different carbon sources and light conditions, with a comparable biomass and lipid yield. The content and composition of fatty acids of E. gracilis 815 were further determined to assess its potential for biodiesel use. Results suggested that E. gracilis 815 has biodiesel potential under glucose addition in dark culture conditions and could be a promising source for producing unsaturated fatty acids. Therefore, E. gracilis 815 is a candidate for short-chain jet fuel, with prospects for a wide variety of applications.

9.
Front Bioeng Biotechnol ; 10: 843414, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309998

RESUMEN

Euglena gracilis (E. gracilis) has secondary endosymbiotic chloroplasts derived from ancient green algae. Its chloroplasts are easily lost under numerous conditions to become permanently bleached mutants. Green cells adapted in the dark contain undeveloped proplastids and they will develop into mature chloroplasts after 3 days of light exposure. Thus, E. gracilis is an ideal model species for a chloroplast development study. Previous studies about chloroplast development in E. gracilis focused on morphology and physiology, whereas few studies have addressed the regulatory processes induced by light in the proteome. In this study, the whole-genome proteome of dark-adapted E. gracilis (WT) and permanently ofloxacin-bleached mutant (B2) was compared under the light exposure after 0, 12, and 72 h. The results showed that the photosynthesis-related proteins were up-regulated over time in both WT and B2. The B2 strain, with losing functional chloroplasts, seemed to possess a complete photosynthetic function system. Both WT and B2 exhibited significant light responses with similar alternation patterns, suggesting the sensitive responses to light in proteomic levels. The main metabolic activities for the utilization of carbon and energy in WT were up-regulated, while the proteins with calcium ion binding, cell cycle, and non-photosynthetic carbon fixation were down-regulated in B2. This study confirmed light-induced chloroplast development in WT from dark, and also for the first time investigates the light responses of a bleached mutant B2, providing more information about the unknown functions of residual plastids in Euglena bleached mutants.

10.
Front Bioeng Biotechnol ; 9: 662655, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34354984

RESUMEN

Euglena gracilis, a green microalga known as a potential candidate for jet fuel producers and new functional food resources, is highly tolerant to antibiotics, heavy metals, and other environmental stresses. Its cells contain many high-value products, including vitamins, amino acids, pigments, unsaturated fatty acids, and carbohydrate paramylon as metabolites, which change contents in response to various extracellular environments. However, mechanism insights into the cellular metabolic response of Euglena to different toxic chemicals and adverse environmental stresses were very limited. We extensively investigated the changes of cell biomass, pigments, lipids, and paramylon of E. gracilis under several environmental stresses, such as heavy metal CdCl2, antibiotics paromomycin, and nutrient deprivation. In addition, global metabolomics by Ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) was applied to study other metabolites and potential regulatory mechanisms behind the differential accumulation of major high-valued metabolites. This study collects a comprehensive update on the biology of E. gracilis for various metabolic responses to stress conditions, and it will be of great value for Euglena cultivation and high-value [154mm][10mm]Q7metabolite production.

11.
Biotechnol Biofuels ; 14(1): 132, 2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-34090512

RESUMEN

BACKGROUND: Microalgae can contribute to more than 40% of global primary biomass production and are suitable candidates for various biotechnology applications such as food, feed products, drugs, fuels, and wastewater treatment. However, the primary limitation for large-scale algae production is the fact that algae requires large amounts of fresh water for cultivation. To address this issue, scientists around the world are working on ways to reuse the water to grow microalgae so that it can be grown in successive cycles without the need for fresh water. RESULTS: In this study, we present the results when we cultivate microalgae with cultivation water that is purified and reused. Specifically, we purify the cultivation water using an ultrafiltration membrane (UFM) treatment and investigate how this treatment affects: the biomass and biochemical components of the microalgae; characteristics of microalgae growth inhibitors; the mechanism whereby potential growth inhibitors are secreted (followed using metabolomics analysis); the effect of activated carbon (AC) treatment and advanced oxidation processes (AOPs) on the removal of growth inhibitors of Euglena gracilis. Firstly, the results show that E. gracilis can be only cultivated through two growth cycles with water that has been filtered and reused, and the growth of E. gracilis is significantly inhibited when the water is used a third time. Secondly, as the number of reused water cycles increases, the Cl- concentration gradually increases in the cultivation water. When the Cl- concentration accumulates to a level of fivefold higher than that of the control, growth of E. gracilis is inhibited as the osmolality tolerance range is exceeded. Interestingly, the osmolality of the reused water can be reduced by replacing NH4Cl with urea as the source of nitrogen in the cultivation water. Thirdly, E. gracilis secretes humic acid (HA)-which is produced by the metabolic pathways for valine, leucine, and isoleucine biosynthesis and by linoleic acid metabolism-into the cultivation water. Because HA contains large fluorescent functional groups, specifically extended π(pi)-systems containing C=C and C=O groups and aromatic rings, we were able to observe a positive correlation between HA concentration and the rate of inhibition of E. gracilis growth using fluorescence spectroscopy. Moreover, photosynthetic efficiency is adversely interfered by HA, thereby reductions in the synthetic efficiency of paramylon and lipid in E. gracilis. In this way, we are able to confirm that HA is the main growth inhibitor of E. gracilis. Finally, we verify that all the HA is removed or converted into nutrients efficiently by AC or UV/H2O2/O3 treatments, respectively. As a result of these treatments, growth of E. gracilis is restored (AC treatment) and the amount of biomass is promoted (UV/H2O2/O3 treatment). CONCLUSIONS: These studies have important practical and theoretical significance for the cyclic cultivation of E. gracilis and for saving water resources. Our work may also provide a useful reference for other microalgae cultivation.

12.
Front Bioeng Biotechnol ; 9: 652021, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33869160

RESUMEN

The microalga Euglena gracilis is utilized in the food, medicinal, and supplement industries. However, its mass production is currently limited by its low production efficiency and high risk of microbial contamination. In this study, physiological and biochemical parameters of E. gracilis co-cultivated with the bacteria Vibrio natriegens were investigated. A previous study reports the benefits of E. gracilis and V. natriegens co-cultivation; however, no bacterium growth and molecular mechanisms were further investigated. Our results show that this co-cultivation positively increased total chlorophyll, microalgal growth, dry weight, and storage sugar paramylon content of E. gracilis compared to the pure culture without V. natriegens. This analysis represents the first comprehensive metabolomic study of microalgae-bacterial co-cultivation, with 339 metabolites identified. This co-cultivation system was shown to have synergistic metabolic interactions between microalgal and bacterial cells, with a significant increase in methyl carbamate, ectoine, choline, methyl N-methylanthranilate, gentiatibetine, 4R-aminopentanoic acid, and glu-val compared to the cultivation of E. gracilis alone. Taken together, these results fill significant gaps in the current understanding of microalgae-bacteria co-cultivation systems and provide novel insights into potential improvements for mass production and industrial applications of E. gracilis.

13.
Mar Pollut Bull ; 163: 111955, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33453511

RESUMEN

Mangrove has been destroyed and reforestation is often undertaken, but whether a regenerated forest could restore its ecological function is not clear. This study compares microbial community structure and function in sediment of the 17-years old natural regenerated mangrove forest (Y17) with the original forest (Y74). No significant differences in phospholipid fatty acid (PLFA) profiles and microbial metabolism of most carbon substrates were found between these two forests. However, activities of dehydrogenase, protease, cellulase and phosphatase were lower in Y17 than Y74, and some specific microbial functions were also different. Both forests exhibited significant seasonal differences in enzyme activities and microbial characteristics, but such difference was larger in Y17 than Y74, indicating the regenerated forest was more sensitive to season. Correspondence analysis based on PLFA profiles and enzyme activities revealed the microbial community in Y17 was comparable to Y74, suggesting sediment microbial characteristics in natural regenerated mangroves could be restored.


Asunto(s)
Microbiota , Humedales , Carbono/análisis , China , Bosques , Suelo , Microbiología del Suelo
15.
Biotechnol Biofuels ; 13: 98, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32514310

RESUMEN

BACKGROUND: Microalgae are widely be used in carbon sequestration, food supplements, natural pigments, polyunsaturated fatty acids, biofuel applications, and wastewater treatment. However, the difficulties incurred in algae cell separation and harvesting, and the exorbitant cost required to overcome these challenges, are the primary limitations to large-scale industrial application of microalgae technology. RESULTS: Herein, we explore the potential of inducing flocculation by adjusting the pH for pre-concentrating Euglena gracilis. Our results demonstrate that flocculation can be induced by increasing the medium pH to 8.5; however, most of the algae cells were broken by increasing the pH > 10. Magnesium phosphate, calcium phosphate, and their derivatives precipitation jointly led to flocculation, although calcium phosphate and its derivatives precipitation had a greater effect. CONCLUSIONS: This study demonstrates that pH treatment-induced flocculation is efficient and feasible for the pre-concentration of E. gracilis under a pilot-scale culture system. Moreover, it also maintained the microalgae cells' integrity, chlorophyll production, and increased paramylon production. These findings provide a theoretical basis for reducing the cost of large-scale E. gracilis harvesting; as well as provide a reference for harvesting other microalgae.

16.
BMC Microbiol ; 20(1): 171, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32560675

RESUMEN

BACKGROUND: Euglena is a new super health food resource that is rich in the natural polysaccharide paramylon, a linear ß-1,3-glucan with various biological activities including activity on the immune system in different cell lines and animals. Despite these reports, the immune regulation mechanism of paramylon is still unclear. RESULTS: We investigate the signaling pathways paramylon impacts in immune macrophages. In RAW264.7 macrophages, sonicated and alkalized paramylon oligomers up-regulated inducible nitric oxide synthase (iNOS) and increased secretion of nitric oxide (NO), interleukin (IL)-6 and tumor necrosis factor (TNF)-α, in a concentration-dependent manner. In addition, paramylon activated the nuclear factor-κB(NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways and inhibiting these pathways attenuated the paramylon-induced secretion of the above immune-mediators. CONCLUSIONS: These results demonstrate that Euglena gracilis paramylon modulates the immune system via activation of the NF-κB and MAPK signaling pathways and thus has potential therapeutic benefits.


Asunto(s)
Euglena gracilis/metabolismo , Glucanos/farmacología , Macrófagos/parasitología , Transducción de Señal/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Glucanos/inmunología , Interleucina-6/metabolismo , Activación de Macrófagos , Macrófagos/inmunología , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Células RAW 264.7 , Sonicación , Factor de Necrosis Tumoral alfa/metabolismo
17.
PLoS One ; 14(11): e0224926, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31697795

RESUMEN

Euglena, a new superfood on the market, is a nutrient-rich, green single-celled microorganism that features the characteristics of both plant and animal. When cultivated under different conditions, Euglena produces different bioactive nutrients. Interestingly, Euglena is the only known microorganism whose chloroplasts are easy to lose under stress and become permanently bleached. We applied gas chromatography-mass spectrometry (GC-MS) to determine the metabolomes of wild-type (WT) Euglena gracilis and its bleached mutant OflB2 under light stimulation. We found a significant metabolic difference between WT and OflB2 cells in response to light. An increase of membrane components (phospholipids and acylamides) was observed in WT, while a decrease of some stimulant metabolites was detected in OflB2. These metabolomic changes after light stimulation are of great significance to the development of Euglena chloroplasts and their communications with the nucleus.


Asunto(s)
Euglena gracilis/metabolismo , Euglena gracilis/efectos de la radiación , Luz , Metabolómica , Mutación/genética , Análisis por Conglomerados , Euglena gracilis/crecimiento & desarrollo , Metaboloma/efectos de la radiación , Pigmentos Biológicos/metabolismo , Análisis de Componente Principal
18.
Front Microbiol ; 9: 1479, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30022974

RESUMEN

Epigenetic modifications such as DNA methylation are well known as connected with many important biological processes. Rapid accumulating evidence shows environmental stress can generate particular defense epigenetic changes across generations in eukaryotes. This transgenerational epigenetic inheritance in animals and plants has gained interest over the last years. Cyanobacteria play very crucial role in the earth, and as the primary producer they can adapt to nearly all diverse environments. However, few knowledge about the genome wide epigenetic information such as methylome information in cyanobacteria, especially under any environment stress, was reported so far. In this study we profiled the genome-wide cytosine methylation from a model cyanobacterium Synechocystis sp. PCC 6803, and explored the possibility of transgenerational epigenetic process in this ancient single-celled prokaryote by comparing the DNA methylomes among normal nitrogen medium cultivation, nitrogen starvation for 72 h and nitrogen recovery for about 12 generations. Our results shows that DNA methylation patterns in nitrogen starvation and nitrogen recovery are much more similar with each other, significantly different from that of the normal nitrogen. This study reveals the difference in global DNA methylation pattern of cyanobacteria between normal and nutrient stress conditions and reports the evidence of transgenerational epigenetic process in cyanobacteria. The results of this study may contribute to a better understanding of epigenetic regulation in prokaryotic adaptation to and survive in the ever changing environment.

19.
Biotechnol Biofuels ; 11: 40, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29456627

RESUMEN

BACKGROUND: Individual nutrient depletion is widely used to induce lipid accumulation in microalgae, which also causes cell growth inhibition and decreases the total biomass. Thus, improving the lipid accumulation without biomass loss in the nutrient deficiency cells becomes a potential cost-effective treatment for cheaper biofuels. METHODS: In this study, the effects of different nutritional conditions on the growth and contents of lipids in Chlamydomonas reinhardtii were compared, and the metabolic profiles under different nutritional conditions were also investigated. RESULTS: We showed that similar to other microalgae, nitrogen or phosphorus deficiency inhibited the growth of Chlamydomonas and combined nutrition deficiency reduced biomass by up to 31.7%, though lipid contents in cells (g/g dry weight [DW]) were significantly increased. The addition of sodium acetate countered this growth inhibition that resulted from nitrogen and phosphorus deficiency, with significantly increased biomass. Furthermore, the combination of 4 g/L sodium acetate supplementation with nitrogen and phosphorous deficiency increased total fatty acid yield (mg/L) by 93.0 and 150.1% compared to nutrient-depleted and normal culture conditions, respectively. Metabolite content was affected by the different nutritional conditions, especially metabolites that are involved in lipid metabolism, amino acid metabolism and metabolism of external substances. CONCLUSION: Further research into these metabolites could shed light onto the relationship between cell growth inhibition and fatty acid accumulation in Chlamydomonas.

20.
Biotechnol Biofuels ; 10: 239, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29075323

RESUMEN

BACKGROUND: Microalgae have been demonstrated to be among the most promising phototrophic species for producing renewable biofuels and chemicals. Ethanol and butanol are clean energy sources with good chemical and physical properties as alternatives to gasoline. However, biosynthesis of these two biofuels has not been achieved due to low tolerance of algal cells to ethanol or butanol. RESULTS: With an eye to circumventing these problems in the future and engineering the robust alcohol-producing microalgal hosts, we investigated the metabolic responses of the model green alga Chlamydomonas reinhardtii to ethanol and butanol. Using a quantitative proteomics approach with iTRAQ-LC-MS/MS technologies, we detected the levels of 3077 proteins; 827 and 730 of which were differentially regulated by ethanol and butanol, respectively, at three time points. In particular, 41 and 59 proteins were consistently regulated during at least two sampling times. Multiple metabolic processes were affected by ethanol or butanol, and various stress-related proteins, transporters, cytoskeletal proteins, and regulators were induced as the major protection mechanisms against toxicity of the organic solvents. The most highly upregulated butanol response protein was Cre.770 peroxidase. CONCLUSIONS: The study is the first comprehensive view of the metabolic mechanisms employed by C. reinhardtii to defend against ethanol or butanol toxicity. Moreover, the proteomic analysis provides a resource for investigating potential gene targets for engineering microalgae to achieve efficient biofuel production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...