Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Pestic Biochem Physiol ; 194: 105481, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532313

RESUMEN

RNA interference (RNAi) is recognized as a new and environmentally friendly pest control strategy due to its high specificity. However, the RNAi efficiency is relatively low in many sucking insect pests, such as Apolygus lucorum. Therefore, there is an urgent need to develop new and effective ways of dsRNA delivery. Bacterially expressed or T7 synthesized dsRNA targeting a G Protein-Coupled Receptor Kinase 2 gene was mixed with chitosan in a 1:2 ratio by mass. The size of the chitosan/dsRNA nanoparticles was 69 ± 12 nm, and the TEM and AFM images showed typical spherical or ellipsoidal structures. The chitosan nanoparticles protected the dsRNA from nuclease activity, and pH and temperature-dependent degradation, and the fluorescently-tagged nanoparticles were found to be stable on the surface of green bean plants (48 h) (Phaseolus vulgaris) and were absorbed by midgut epithelial cells and transported to hemolymph. Once fed to the A. lucorum nymph, chitosan/dsRNA could effectively inhibit the expression of the G protein-coupled receptor kinase 2 gene (70%), and led to significantly increase mortality (50%), reduced weight (26.54%) and a prolonged developmental period (8.04%). The feeding-based and chitosan-mediated dsRNA delivery method could be a new strategy for A. lucorum management, providing an effective tool for gene silencing of piercing-sucking insects.


Asunto(s)
Quitosano , Heterópteros , Animales , Quitosano/farmacología , Quitosano/química , Heterópteros/genética , Interferencia de ARN , Silenciador del Gen , Insectos/genética , ARN Bicatenario/genética , Receptores Acoplados a Proteínas G/genética
3.
Nat Biomed Eng ; 7(10): 1270-1281, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37537304

RESUMEN

In microneurosurgery, it is crucial to maintain the structural and functional integrity of the nerve through continuous intraoperative identification of neural anatomy. To this end, here we report the development of a translatable system leveraging soft and stretchable organic-electronic materials for continuous intraoperative neurophysiological monitoring. The system uses conducting polymer electrodes with low impedance and low modulus to record near-field action potentials continuously during microsurgeries, offers higher signal-to-noise ratios and reduced invasiveness when compared with handheld clinical probes for intraoperative neurophysiological monitoring and can be multiplexed, allowing for the precise localization of the target nerve in the absence of anatomical landmarks. Compared with commercial metal electrodes, the neurophysiological monitoring system allowed for enhanced post-operative prognoses after tumour-resection surgeries in rats. Continuous recording of near-field action potentials during microsurgeries may allow for the precise identification of neural anatomy through the entire procedure.

4.
MedComm (2020) ; 4(4): e333, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37502611

RESUMEN

Cellular senescence has been listed as a hallmark of cancer, but its role in colorectal cancer (CRC) remains unclear. We comprehensively evaluated the transcriptome, genome, digital pathology, and clinical data from multiple datasets of CRC patients and proposed a novel senescence subtype for CRC. Multi-omics data was used to analyze the biological features, tumor microenvironment, and mutation landscape of senescence subtypes, as well as drug sensitivity and immunotherapy response. The senescence score was constructed to better quantify senescence in each patient for clinical use. Unsupervised learning revealed three transcriptome-based senescence subtypes. Cluster 1, characterized by low senescence and activated proliferative pathways, was sensitive to chemotherapeutic drugs. Cluster 2, characterized by intermediate senescence and high immune infiltration, exhibited significant immunotherapeutic advantages. Cluster 3, characterized by high senescence, high immune, and stroma infiltration, had a worse prognosis and maybe benefit from targeted therapy. We further constructed a senescence scoring system based on seven senescent genes through machine learning. Lower senescence scores were highly predictive of longer disease-free survival, and patients with low senescence scores may benefit from immunotherapy. We proposed the senescence subtypes of CRC and our findings provide potential treatment interventions for each CRC senescence subtype to promote precision treatment.

5.
JCI Insight ; 8(6)2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36809297

RESUMEN

Cancer stem-like cells (CSCs) are critically involved in cancer metastasis and chemoresistance, acting as one major obstacle in clinical practice. While accumulating studies have implicated the metabolic reprogramming of CSCs, mitochondrial dynamics in such cells remain poorly understood. Here we pinpointed OPA1hi with mitochondrial fusion as a metabolic feature of human lung CSCs, licensing their stem-like properties. Specifically, human lung CSCs exerted enhanced lipogenesis, inducing OPA1 expression via transcription factor SAM Pointed Domain containing ETS transcription Factor (SPDEF). In consequence, OPA1hi promoted mitochondrial fusion and stemness of CSCs. Such lipogenesishi, SPDEFhi, and OPA1hi metabolic adaptions were verified with primary CSCs from lung cancer patients. Accordingly, blocking lipogenesis and mitochondrial fusion efficiently impeded CSC expansion and growth of organoids derived from patients with lung cancer. Together, lipogenesis regulates mitochondrial dynamics via OPA1 for controlling CSCs in human lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Dinámicas Mitocondriales , Lipogénesis/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Factores de Transcripción/metabolismo
6.
Adv Mater ; 35(12): e2209606, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36620938

RESUMEN

Hydrogels are ideal building blocks to fabricate the next generation of electrodes for acquiring high-quality physiological electrical signals, for example, electroencephalography (EEG). However, collection of EEG signals still suffers from electrode deformation, sweating, extensive body motion and vibration, and environmental interference. Herein, polyvinyl alcohol and polyvinylpyrrolidone are selected to prepare a hydrogel network with tissue-like modulus and excellent flexibility. Additionally, polydopamine nanoparticles, obtained by polydopamine peroxidation, are integrated into the hydrogel to endow them with higher transparency, higher self-adhesion, and lower impedance. Consequently, a multichannel and wirelessly operated hydrogel electrode can establish a conformal and stable interface with tissue and illustrate high channel uniformity, low interfacial contact impedance, low power noise, long-term stability, and a tolerance to sweat and motion. Furthermore, the hydrogel electrode shows the unprecedented ability to classify the recorded high-quality prefrontal EEG signals into seven-category sustained attention with high accuracy (91.5%), having great potential applications in the assessment of human consciousness and in multifunctional diagnoses.


Asunto(s)
Hidrogeles , Cementos de Resina , Humanos , Adhesivos , Electrodos , Electroencefalografía
7.
J Exp Bot ; 74(6): 1990-2004, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36575924

RESUMEN

Pentyl leafy volatiles (PLV) are C5 volatiles produced from polyunsaturated fatty acids by plant 13-lipoxygenases (13-LOX) in concert with other lipid metabolizing enzymes. Unlike related C6 volatiles (GLV, green leafy volatiles), little is known about the biosynthesis and physiological function of PLV in plants. Zea mays LOX6 (ZmLOX6) is an unusual plant LOX that lacks lipid oxygenation activity but acts as a hydroperoxide lyase hypothesized to be specifically involved in PLV synthesis. We overexpressed ZmLOX6 in Arabidopsis thaliana and established that it indeed produces PLVs. Overexpression of ZmLOX6 caused a mild chlorotic phenotype, and induced a similar phenotype in untransformed Col-0 plants grown in close proximity, suggesting that airborne signals, such as PLVs, are responsible for the phenotype. PLV production, dependency on the substrate from endogenous 13-LOX(s), and likely competition with endogenous 13-oxylipin pathway were consistent with the model that ZmLOX6 functions as a hydroperoxide lyase. The abundance of individual PLVs was differentially affected by ZmLOX6 overexpression, and the new profile indicated that ZmLOX6 had reaction products distinct from endogenous PLV-producing activities in the Arabidopsis host plants. ZmLOX6 overexpression also induced a new hormonal status, which is likely responsible for increased attraction and propagation of aphids, nonetheless improving host plant tolerance to aphid infestation.


Asunto(s)
Áfidos , Arabidopsis , Animales , Arabidopsis/metabolismo , Áfidos/fisiología , Zea mays/genética , Plantas , Hojas de la Planta/metabolismo , Lípidos
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4904-4908, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086597

RESUMEN

Adaptive Deep Brain Stimulation (aDBS) has been proposed in literature to avoid the negative consequences associated with the continuous stimulation delivered through traditional deep brain stimulation. This work seeks to determine a group of neural biomarkers that a classification algorithm could use on an aDBS device using rodent animal models. The neural activities were acquired from the primary motor cortex of four Parkinsonian model rats and four healthy rats from a control group. To overcome the variability introduced from the small rat sample size, this work proposes a novel method for combining and running Genetic Feature Selection and Forward Stepwise Feature Selection in an environment where classification accuracy varies greatly based on how the folds are organized before cross-validation. Three separate classification algorithms, Logistic Regression, k-Nearest Neighbor, and Random Forest are used to verify the proposed method. For Logistic Regression, the set of Alpha Power (7-12 Hz), High Beta Power (20-30 Hz), and 55-95 Hz Gamma Power shows the best performance in classification. For k-Nearest Neighbor, the characterizing features are Low Beta Power (12-20 Hz), High Beta Power, All Beta Power (12-30 Hz), 55-95 Hz Gamma Power, and 95-105 Hz Gamma Power. For Random Forest, they are High Beta Power, All Beta Power, 55-95 Hz Gamma Power, 95-105 Hz Gamma Power, and 300-350 Hz High-Frequency Oscillations Power. With the selected feature set, experimental results show an increasing classification accuracy from 59.08% to 77.69% for Logistic Regression, from 49.53% to 73.44% for k-Nearest Neighbor, and from 54.10% to 71.15% for Random Forest. Clinical Relevance- This experiment provides a method for determining the most effective biomarkers from a larger set for classifying Parkinsonian behavior for an aDBS device.


Asunto(s)
Proyectos de Investigación , Roedores , Algoritmos , Animales , Biomarcadores , Análisis por Conglomerados , Ratas
9.
Nature ; 605(7909): 332-339, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35508659

RESUMEN

Stomata exert considerable effects on global carbon and water cycles by mediating gas exchange and water vapour1,2. Stomatal closure prevents water loss in response to dehydration and limits pathogen entry3,4. However, prolonged stomatal closure reduces photosynthesis and transpiration and creates aqueous apoplasts that promote colonization by pathogens. How plants dynamically regulate stomatal reopening in a changing climate is unclear. Here we show that the secreted peptides SMALL PHYTOCYTOKINES REGULATING DEFENSE AND WATER LOSS (SCREWs) and the cognate receptor kinase PLANT SCREW UNRESPONSIVE RECEPTOR (NUT) counter-regulate phytohormone abscisic acid (ABA)- and microbe-associated molecular pattern (MAMP)-induced stomatal closure. SCREWs sensed by NUT function as immunomodulatory phytocytokines and recruit SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) co-receptors to relay immune signalling. SCREWs trigger the NUT-dependent phosphorylation of ABA INSENSITIVE 1 (ABI1) and ABI2, which leads to an increase in the activity of ABI phosphatases towards OPEN STOMATA 1 (OST1)-a key kinase that mediates ABA- and MAMP-induced stomatal closure5,6-and a reduction in the activity of S-type anion channels. After induction by dehydration and pathogen infection, SCREW-NUT signalling promotes apoplastic water loss and disrupts microorganism-rich aqueous habitats to limit pathogen colonization. The SCREW-NUT system is widely distributed across land plants, which suggests that it has an important role in preventing uncontrolled stomatal closure caused by abiotic and biotic stresses to optimize plant fitness.


Asunto(s)
Ácido Abscísico , Reguladores del Crecimiento de las Plantas , Inmunidad de la Planta , Estomas de Plantas , Plantas , Agua , Proteínas de Arabidopsis , Deshidratación , Desecación
10.
Front Physiol ; 13: 833652, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35153841

RESUMEN

RNA interference is a powerful tool that post-transcriptionally silences target genes. However, silencing efficacy varies greatly among different insect species. Recently, we attempted to knock down some housekeeping genes in the tawny crazy ant (Nylanderia fulva), a relatively new invasive species in the southern United States, but only achieved relatively low silencing efficiency when dsRNA was orally administered. Here, we detected divalent cation-dependent, dsRNA-degrading activity in the midgut fluid of worker ants in ex vivo assays. To determine whether dsRNA degradation could contribute to low effectiveness of oral RNAi in N. fulva, we cloned its sole dsRNase gene (NfdsRNase). The deduced amino acid sequence contained a signal peptide and an endonuclease domain. Sequence alignment indicated a high degree of similarity with well-characterized dsRNases, particularly the six key residues at active sites. We also identified dsRNase homologs from five other ant species and found a tight phylogenetic relationship among ant dsRNases. NfdsRNase is expressed predominantly in the abdomen of worker ants. Oral delivery of dsRNA of NfdsRNase significantly reduced the expression of NfdsRNase transcripts, and substantially suppressed dsRNA-degrading activity of worker ants' midgut fluids as well. Our data suggest that dsRNA stability in the alimentary tract is an important factor for gene silencing efficiency in N. fulva, and that blocking NfdsRNase in gut lumen could potentially improve RNAi, a novel pest management tactic in control of N. fulva and other ant species.

11.
Insect Biochem Mol Biol ; 140: 103681, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34800642

RESUMEN

Oxygen (O2) plays an essential role in aerobic organisms including terrestrial insects. Under hypoxic stress, the cowpea bruchid (Callosobruchus maculatus) ceases feeding and growth. However, larvae, particularly 4th instar larvae exhibit very high tolerance to hypoxia and can recover normal growth once brought to normoxia. To better understand the molecular mechanism that enables insects to cope with low O2 stress, we performed RNA-seq to distinguish hypoxia-responsive genes in midguts and subsequently identified potential common cis-elements in promoters of hypoxia-induced and -repressed genes, respectively. Selected elements were subjected to gel-shift and transient transfection assays to confirm their cis-regulatory function. Of these putative common cis-elements, AREB6 appeared to regulate the expression of CmLPCAT and CmScylla, two hypoxia-induced genes. CmZFH, the putative AREB6-binding protein, was hypoxia-inducible. Transient expression of CmZFH in Drosophila S2 cells activated CmLPCAT and CmScylla, and their induction was likely through interaction of CmZFH with AREB6. Binding to AREB6 was further confirmed by bacterially expressed CmZFH recombinant protein. Deletion analyses indicated that the N-terminal zinc-finger cluster of CmZFH was the key AREB6-binding domain. Through in silico and experimental exploration, we discovered novel transcriptional regulatory components associated with gene expression dynamics under hypoxia that facilitated insect survival.


Asunto(s)
Escarabajos , Hipoxia/genética , Animales , Escarabajos/genética , Escarabajos/fisiología , Genes de Insecto , Insectos , Larva/genética , Larva/fisiología , Oxígeno/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Dedos de Zinc/genética
12.
Plant Signal Behav ; 16(6): 1908708, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33794732

RESUMEN

CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) are core components of the circadian clock in Arabidopsis thaliana that impacts plant response to biotic stresses. Their clock-regulating functions are believed to be partially redundant, and mutation of either gene leads to shortened periods of the circadian cycle. Our recent study has demonstrated that CCA1 promotes plant resistance to the green peach aphid (Myzus persicae) through modulation of indole glucosinolate biosynthesis, but the role of LHY remains to be elucidated. Here we showed that, similar to cca1-11, single mutant lhy-21 became more susceptible to aphid infestation. Damage to the cca1-11 lhy-21 double mutant by aphids was most pronounced, indicating that the defensive roles of CCA1 and LHY were not entirely redundant. Also, the cyclic expression pattern of key indole glucosinolate biosynthetic genes was considerably disturbed in both single mutants and this was more severe in the double mutant. Apparently, both CCA1 and LHY were necessary for circadian-regulated indole glucosinolate biosynthesis. Taken together, LHY-CCA1 coordination in transcriptional regulation of indole glucosinolate biosynthetic genes most likely contributed to plant defensive capacity against aphids.


Asunto(s)
Áfidos/parasitología , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/parasitología , Ritmo Circadiano/fisiología , Glucosinolatos/biosíntesis , Indoles/metabolismo , Adaptación Fisiológica/genética , Adaptación Fisiológica/inmunología , Animales , Regulación de la Expresión Génica de las Plantas , Glucosinolatos/genética , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo
13.
Pest Manag Sci ; 77(1): 148-158, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32648658

RESUMEN

BACKGROUND: Overexpressing CIRCADIAN CLOCK ASSOCIATED1 in Arabidopsis thaliana (CCA1-ox) increases indole glucosinolate production and resistance to green peach aphid (Myzus persicae). Little is known of how aphids respond to this group of plant defense compounds or of the underlying molecular mechanism. RESULTS: Aphids reared on CCA1-ox for over 40 generations (namely the CCA population) became less susceptible to CCA1-ox than aphids maintained on the wild-type Col-0 (namely the COL population). This elevated tolerance was transgenerational as it remained for at least eight generations after the CCA population was transferred to Col-0. Intriguingly, transcriptome analysis indicated that all differential cytochrome P450 monooxygenase genes (MpCYPs), primarily MpCYP4s, MpCYP380s and MpCYP6s, were more highly expressed in the CCA population. Application of a P450 inhibitor to the CCA population resulted in decreased aphid reproduction on CCA1-ox, which was not observed if aphids were reared on Col-0. When indole glucosinolate biosynthesis in CCA1-ox was blocked using virus-induced gene silencing, the effect of the P450 inhibitor on the CCA population was attenuated, affirming the essential role played by MpCYPs in counteracting the defense mechanism in CCA1-ox that is low or absent in Col-0. Furthermore, we used host-induced gene silencing to identify MpCYP380C6 and MpCYP380C9 that specifically facilitated the CCA population to cope with CCA1-mediated plant defense. Expression profiles revealed their possible contribution to the transgenerational tolerance observed in aphids. CONCLUSION: MpCYP380C6 and MpCYP380C9 in aphids play a crucial role in mitigating indole glucosinolate-mediated plant defense, and this effect is transgenerational.


Asunto(s)
Áfidos , Prunus persica , Animales , Áfidos/genética , Sistema Enzimático del Citocromo P-450/genética , Glucosinolatos , Indoles/farmacología
14.
IEEE Trans Biomed Circuits Syst ; 14(6): 1421-1430, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33201829

RESUMEN

A bio-potential recorder working under 0.8 V supply voltage with a tunable low-pass filter is proposed in this paper. The prototype is implemented in TSMC 180 nm CMOS technology, featuring a power consumption of 2.27  µW, while preserving a high tolerance of power-line interference (PLI) up to 600 m Vpp, a common-mode rejection ratio (CMRR) of higher than 100 dB, a THD of -65.5 dB, and a noise density of 50 nV/ √{Hz} by employing four new techniques, including 1) low noise chopper modulator, 2) feedback loop based common-mode cancellation loop (CMCL), 3) offset cancellation loop (OCL) with PMOS backgate control scheme, and 4) a very-lower transconductance (VLT) operational transconductance amplifier (OTA) using in the DC-servo-loop (DSL). The measured mid-band gain is 43.3 dB with a high-pass cut-off frequency of 1.2 Hz. The low-pass cut-off frequency can be configured from 650 Hz to 7.5 kHz. The measured input-referred integrated noise is 1.2 uVrms in the frequency band of 1-650 Hz and 4.1 uVrms in the 1 Hz-7.5 kHz frequency band, respectively, leading to a power efficiency factor (PEF) of 7.49 and 7.59.


Asunto(s)
Amplificadores Electrónicos , Procesamiento de Señales Asistido por Computador/instrumentación , Ingeniería Biomédica/instrumentación , Suministros de Energía Eléctrica , Electrocardiografía , Electromiografía , Humanos
15.
Insect Sci ; 27(6): 1311-1321, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31677334

RESUMEN

The potato/tomato psyllid Bactericera cockerelli causes serious damage to several solanaceous crops by direct feeding and vectoring Candidatus Liberibacter solanacearum, a bacterial pathogen. Electron beam (eBeam) irradiation is an environmentally friendly, chemical-free alternative method that is increasing in use for disinfestation of insect pests. We hypothesize that this irradiation technology will have detrimental effects on potato psyllid and thus impede its disease vectoring. To this end, we explored the effects of eBeam treatment ranging from 50 to 500 Gy on survival, development and reproduction of this pest. Impact on psyllids was apparently dose-dependent. When irradiated at 350 Gy, eggs could not hatch, 1st instar nymphs failed to emerge, and although a small portion of irradiated 5th instar nymphs survived, the emerged adults were mostly deformed. Abnormality in eclosed adults suggests harmful effects of eBeam on metamorphosis. Reproduction was seriously impaired when female psyllids were exposed to eBeam at the 5th instar nymphal or young adult stage, presumably due to inability to form oocytes. In addition, reciprocal crosses between irradiated and untreated psyllids indicated that female psyllids were more radiosensitive than males to eBeam. Taken together, these findings indicate that eBeam negatively impacted potato psyllid development and reproduction, which would inevitably compromise its disease transmission capacity. A dose of 350 Gy can be considered as a reference dose for effective control of potato psyllids.


Asunto(s)
Electrones , Hemípteros/efectos de la radiación , Animales , Relación Dosis-Respuesta en la Radiación , Femenino , Hemípteros/crecimiento & desarrollo , Hemípteros/fisiología , Longevidad/efectos de la radiación , Masculino , Reproducción/efectos de la radiación
16.
Insect Sci ; 27(1): 113-121, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29790281

RESUMEN

The tawny crazy ant (Nylanderia fulva) is a new invasive pest in the United States. At present, its management mainly relies on the use of synthetic insecticides, which are generally ineffective at producing lasting control of the pest, necessitating alternative environmentally friendly measures. In this study, we evaluated the feasibility of gene silencing to control this ant species. Six housekeeping genes encoding actin (NfActin), coatomer subunit ß (NfCOPß), arginine kinase (NfArgK), and V-type proton ATPase subunits A (NfvATPaseA), B (NfvATPaseB) and E (NfvATPaseE) were cloned. Phylogenetic analysis revealed high sequence similarity to homologs from other ant species, particularly the Florida carpenter ant (Camponotus floridanus). To silence these genes, vector L4440 was used to generate six specific RNAi constructs for bacterial expression. Heat-inactivated, dsRNA-expressing Escherichia coli were incorporated into artificial diet. Worker ants exhibited reduced endogenous gene expression after feeding on such diet for 9 d. However, only ingestion of dsRNAs of NfCOPß (a gene involved in protein trafficking) and NfArgK (a cellular energy reserve regulatory gene in invertebrates) caused modest but significantly higher ant mortality than the control. These results suggest that bacterially expressed dsRNA can be orally delivered to ant cells as a mean to target its vulnerabilities. Improved efficacy is necessary for the RNAi-based approach to be useful in tawny crazy ant management.


Asunto(s)
Hormigas , Genes de Insecto , Control de Insectos/métodos , Interferencia de ARN , Animales , Hormigas/genética
17.
Plant Physiol ; 181(3): 1344-1359, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31527087

RESUMEN

CIRCADIAN CLOCK-ASSOCIATED1 (CCA1), a well-known central circadian clock regulator, coordinates plant responses to environmental challenges. Its daily rhythmic expression in Arabidopsis (Arabidopsis thaliana) confers host resistance to the caterpillar Trichoplusia ni However, it is unclear whether CCA1 plays a role in defense against phloem sap-feeding aphids. In this study, we showed that green peach aphid (Myzus persicae) displayed an intrinsic circadian feeding rhythm. Under constant light, wild-type Columbia-0 (Col-0) Arabidopsis plants coentrained with aphids in the same light/dark cycles exhibited greater antixenotic activity than plants preentrained in the opposite cycle from the aphids. Consistently, circadian mutants cca1-1, cca1-11, lhy-21, ztl-1, ztl-4, and lux-2 suffered more severe damage than Col-0 plants when infested by aphids, suggesting that the Arabidopsis circadian clock plays a defensive role. However, the arrhythmic CCA1 overexpression line (CCA1-OX) displayed strong antixenotic and antibiotic activities despite its loss of circadian regulation. Aphids feeding on CCA1-OX plants exhibited lower reproduction and smaller body size and weight than those on Col-0. Apparently, CCA1 regulates both clock-dependent and -independent defense responses. Systematic investigation based on bioinformatics analyses indicated that resistance to aphids in CCA1-OX plants was due primarily to heightened basal indole glucosinolate levels. Interestingly, aphid feeding induced alternatively spliced intron-retaining CCA1a/b transcripts, which are normally expressed at low levels, whereas expression of the major fully spliced CCA1 transcript remained largely unchanged. We hypothesize that posttranscriptional modulation of CCA1 expression upon aphid infestation maximizes the potential of circadian-mediated defense and stress tolerance while ensuring normal plant development.


Asunto(s)
Áfidos/fisiología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Relojes Circadianos/genética , Glucosinolatos/metabolismo , Enfermedades de las Plantas/inmunología , Factores de Transcripción/metabolismo , Animales , Arabidopsis/inmunología , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Ritmo Circadiano , Resistencia a la Enfermedad , Expresión Génica , Indoles/metabolismo , Mutación , Fotoperiodo , Factores de Transcripción/genética
18.
Anal Chem ; 91(3): 1733-1737, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30620572

RESUMEN

Insect damage to crops is a serious issue, in particular when the pest dwells within its host. The cowpea bruchid ( Callosobruchus maculatus) is an herbivore of legumes including beans and peas. The bruchid lays its eggs on the seeds themselves; after hatching, the larvae burrow into and develop inside the seed, complicating detection and treatment. Left unchecked, two insects could destroy up to 50% of 1 ton of harvest cowpea ( Vigna unguiculata) after several months of storage. In this study, we investigated the possibility of using a hand-held Raman spectrometer to detect the pest during its development within intact cowpeas. Our results show that Raman spectroscopy can detect chemical signatures of bruchid larvae as well as their excrements inside the intact seeds. Additionally, using chemometric methods, we distinguished between healthy and infested seeds as well as among seeds hosting developmentally early or late-stage larvae with high accuracy. This study demonstrates Raman spectroscopy's efficacy in not only detection of pathogens and pests present on the surface of plant leaves and the grain but also inside the seeds. This Raman-based method may prove useful as a rapid means of screening crops for internal pests.


Asunto(s)
Protección de Cultivos/métodos , Larva/química , Vigna/química , Gorgojos/crecimiento & desarrollo , Animales , Productos Agrícolas/química , Análisis Discriminante , Análisis de los Mínimos Cuadrados , Semillas/química , Espectrometría Raman/métodos
19.
Plant Signal Behav ; 10(4): e1010936, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25932782

RESUMEN

Reactive oxygen species (ROS) plays an important role in plant defense responses against bacteria, fungi and insect pests. Most recently, we have demonstrated that loss of Arabidopsis thaliana BOTRYTIS-INDUCED KINASE1 (BIK1) function releases its suppression of aphid-induced H2O2 production and cell death, rendering the bik1 mutant more resistant to green peach aphid (Myzus persicae) than wild-type plants. However, little is known regarding how ROS-related gene expression is correlated with bik1-mediated resistance to aphids, or whether these aphids biochemically respond to the oxidative stress. Here, we show that the bik1 mutant exhibited elevated basal expression of ROS-generating and -responsive genes, but not ROS-metabolizing genes. Conversely, we detected enhanced detoxification enzymatic activities in aphids reared on bik1 plants compared to those on wild-type plants, suggesting that aphids counter the oxidative stress associated with bik1 through elevated metabolic resistance.


Asunto(s)
Áfidos/metabolismo , Arabidopsis/parasitología , Interacciones Huésped-Parásitos , Inactivación Metabólica , Especies Reactivas de Oxígeno/metabolismo , Animales , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Herbivoria , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
20.
J Insect Physiol ; 75: 5-11, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25733404

RESUMEN

The cowpea bruchid (Callosobruchus maculatus) is the most important storage pest of grain legumes and comprises geographically distinct strains. Storage under a modified atmosphere with decreased O2 content represents an alternative to chemical fumigants for pest control of stored grains. In this study, we compared reproduction, development and survival, as well as genome size of bruchid strains from South India (SI), Burkina Faso (BF), Niger (CmNnC) and the United States (OH), reared on mung bean (Vigna radiata). Fecundity and egg-to-adult duration varied significantly among these strains. Notably, strain BF had the highest fecundity, and strain SI displayed the fastest development whereas strain OH was the slowest. Differences in adult lifespan among strains were only detected in unmated but not in the mated group. Genome size of SI females was significantly larger than that of OH females, and for all four strains, the female genomes were larger than those of their corresponding males. Furthermore, we studied effects of exposure to 1% O2+99% N2 on strains SI and BF. Mortality caused by hypoxia was influenced by not only developmental stage but also by insect strain. Eggs were most sensitive, particularly at the early stage, whereas the 3rd and 4th instar larvae were most tolerant and could survive up to 15 days of low O2. Strain SI was slightly more resistant than BF in egg and larval stages. Proteolytic activity prior to, during and after hypoxia treatment revealed remarkable metabolic plasticity of cowpea bruchids in response to modified atmosphere.


Asunto(s)
Escarabajos/fisiología , Oxígeno/metabolismo , África Occidental , Anaerobiosis , Animales , Escarabajos/genética , Escarabajos/crecimiento & desarrollo , Fabaceae/parasitología , Femenino , India , Larva/crecimiento & desarrollo , Larva/fisiología , Estadios del Ciclo de Vida , Longevidad , Masculino , Reproducción/fisiología , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...