Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 12(42): 27431-27441, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36276008

RESUMEN

In order to explore the surface state modulation mechanism of carbon dots (CDs) with high quantum yield (QY) and high product yield (PY), CDs were synthesized from different carbon sources with different contents of oxygen-containing functional groups and different silane coupling agents with nitrogen-containing functional groups. The highest QY of as-prepared CDs can reach 97.32% and the PY values of CDs are all high ranging from 46.33-58.76%. It is found that the high content of C[double bond, length as m-dash]O and pyrrolic N on the surface of CDs can endow CDs with high QY. Moreover, the PY of CDs not only depends on whether CDs have the crosslinked structure, but also is closely and positively correlated with pyridinic N. Consequently, our findings suggest that raw materials rich in carboxyl groups and amino groups are beneficial to the synthesis of CDs with high QY, and whether CDs with crosslinked structure and high content of pyridinic N decide the high PY of CDs. This work provides a theoretical guidance for large-scale synthesis of CDs with high QY and high PY.

2.
iScience ; 25(9): 104884, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36039289

RESUMEN

Delayed fluorescent (DF) materials have high internal quantum efficiency because of the triplet excitons involved in the radiation transition, and the spin-forbidden transition can effectively improve their luminescent lifetime. Compared with traditional afterglow materials including metal-containing inorganic coordination compounds and organic compounds, the DF materials based on carbon dots (CDs) have drawn extensive attention because of their advantages of low toxicity, environmental friendliness, stable luminescence, easy preparation and low cost. Most CDs-based DF materials can be realized by embedding CDs in matrix with covalent bonds, hydrogen bonds or/and other supramolecular interactions. Recently, matrix-free self-protective CDs-based DF materials are emerging. This review systematically summarizes the DF mechanism and structural regulation strategies of CDs-based DF materials, and the applications of CDs-based DF materials in anti-counterfeiting, information encryption, temperature sensing and other fields are introduced. Finally, the existing problems and future potentials of CDs-based DF materials are proposed and prospected.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...