Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Sci (China) ; 138: 585-596, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38135422

RESUMEN

We developed a single-particle optical particle counter with polarization detection (SOPC) for the real-time measurement of the optical size and depolarization ratio (defined as the ratio of the vertical component to the parallel component of backward scattering) of atmospheric particles, the polarization ratio (DR) value can reflect the irregularity of the particles. The SOPC can detect aerosol particles with size larger than 500 nm and the maximum particle count rate reaches ∼1.8 × 105 particles per liter. The SOPC uses a modulated polarization laser to measure the optical size of particles according to forward scattering signal and the DR value of the particles by backward S and P signal components. The sampling rate of the SOPC was 106 #/(sec·channel), and all the raw data were processed online. The calibration curve was obtained by polystyrene latex spheres with sizes of 0.5-10 µm, and the average relative deviation of measurement was 3.96% for sub 3 µm particles. T-matrix method calculations showed that the DR value of backscatter light at 120° could describe the variations in the aspect ratio of particles in the above size range. We performed insitu observations for the evaluation of the SOPC, the mass concentration constructed by the SOPC showed good agreement with the PM2.5 measurements in a nearby state-controlled monitoring site. This instrument could provide useful data for source appointment and regulations against air pollution.


Asunto(s)
Contaminación del Aire , Monitoreo del Ambiente , Monitoreo del Ambiente/métodos , Tamaño de la Partícula , Luz , Microesferas
2.
J Environ Sci (China) ; 132: 31-42, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37336608

RESUMEN

Black carbon (BC) aerosols in the atmosphere play a significant role in climate systems due to their strong ability to absorb solar radiation. The lifetime of BC depends on atmospheric transport, aging and consequently on wet scavenging processes (in-cloud and below-cloud scavenging). In this study, sequential rainwater samples in eight rainfall events collected in 2 mm interval were measured by a tandem system including a single particle soot photometer (SP2) and a nebulizer. The results showed that the volume-weighted average (VWA) mass concentrations of refractory black carbon (rBC) in each rainfall event varied, ranging from 10.8 to 78.9 µg/L. The highest rBC concentrations in the rainwater samples typically occurred in the first fraction from individual rainfall events. The geometric mean median mass-equivalent diameter (MMD) decreased under precipitation, indicating that rBC with larger sizes was relatively aged and preferentially removed by wet scavenging. A positive correlation (R2 = 0.73) between the VWA mass concentrations of rBC in rainwater and that in ambient air suggested the important contribution of scavenging process. Additionally, the contributions of in-cloud and below-cloud scavenging were distinguished and accounted for 74% and 26% to wet scavenging, respectively. The scavenging ratio of rBC particles was estimated to be 0.06 on average. This study provides helpful information for better understanding the mechanism of rBC wet scavenging and reducing the uncertainty of numerical simulations of the climate effects of rBC.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Beijing , Hollín/análisis , Aerosoles/análisis , Carbono , Monitoreo del Ambiente/métodos
3.
Adv Atmos Sci ; 39(10): 1608-1622, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35400782

RESUMEN

The attainment of suitable ambient air quality standards is a matter of great concern for successfully hosting the XXIV Olympic Winter Games (OWG). Transport patterns and potential sources of pollutants in Zhangjiakou (ZJK) were investigated using pollutant monitoring datasets and a dispersion model. The PM2.5 concentration during February in ZJK has increased slightly (28%) from 2018 to 2021, mostly owing to the shift of main potential source regions of west-central Inner Mongolia and Mongolian areas (2015-18) to the North China Plain and northern Shanxi Province (NCPS) after 2018. Using CO as an indicator, the relative contributions of the different regions to the receptor site (ZJK) were evaluated based on the source-receptor-relationship method (SRR) and an emission inventory. We found that the relative contribution of pollutants from NCPS increased from 33% to 68% during 2019-21. Central Inner Mongolia (CIM) also has an important impact on ZJK under unfavorable weather conditions. This study demonstrated that the effect of pollution control measures in the NCPS and CIM should be strengthened to ensure that the air quality meets the standard during the XXIV OWG.

4.
Huan Jing Ke Xue ; 43(2): 714-722, 2022 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-35075845

RESUMEN

GC-SAW was used to carry out online sampling analysis of the main business sources, residential sources, and roads in Rizhao City from August 22 to 29 in 2020. The spatial distribution characteristics of various volatile organic compounds (VOCs) in the atmosphere were obtained, and the chemical reactivity of the main components was studied. The results showed that the VOCs with carbon atoms greater than 5 (VOCC>5) were mainly toluene propylbenzene and n-octane, and the spatial distribution was significant; the average ρ(TVOCC>5) in the port area, downtown area, and industrial area were 80.5, 115.3, and 118.1 µg·m-3, respectively. Combined with road traffic impact and industrial production emissions, the maximum ρ(TVOCC>5) on the main roads in Rizhao City appeared near the Yingbin Road; the concentration value was 164.37 µg·m-3; the ρ(BTEX) in adhesive processing, painting, and glass factories reached 432.34, 1010.84, and 1989.85 µg·m-3, respectively. The chemical reactivity analysis of the main components of VOCC>5 showed that BTEX and n-octane were the important active components of ozone formation in Rizhao City.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Ciudades , Monitoreo del Ambiente , Ozono/análisis , Compuestos Orgánicos Volátiles/análisis
5.
J Environ Sci (China) ; 115: 465-473, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34969474

RESUMEN

Cross-boundary transport of air pollution is a difficult issue in pollution control for the North China Plain. In this study, an industrial district (Shahe City) with a large glass manufacturing sector was investigated to clarify the relative contribution of fine particulate matter (PM2.5) to the city's high levels of pollution. The Nest Air Quality Prediction Model System (NAQPMS), paired with Weather Research and Forecasting (WRF), was adopted and applied with a spatial resolution of 5 km. During the study period, the mean mass concentrations of PM2.5, SO2, and NO2 were observed to be 132.0, 76.1, and 55.5 µg/m3, respectively. The model reproduced the variations in pollutant concentrations in Shahe at an acceptable level. The simulation of online source-tagging revealed that pollutants emitted within a 50-km radius of downtown Shahe contributed 63.4% of the city's total PM2.5 concentration. This contribution increased to 73.9±21.2% when unfavorable meteorological conditions (high relative humidity, weak wind, and low planetary boundary layer height) were present; such conditions are more frequently associated with severe pollution (PM2.5 ≥ 250 µg/m3). The contribution from Shahe was 52.3±21.6%. The source apportionment results showed that industry (47%), transportation (10%), power (17%), and residential (26%) sectors were the most important sources of PM2.5 in Shahe. The glass factories (where chimney stack heights were normally < 70 m) in Shahe contributed 32.1% of the total PM2.5 concentration in Shahe. With an increase in PM2.5 concentration, the emissions from glass factories accumulated vertically and narrowed horizontally. At times when pollution levels were severe, the horizontally influenced area mainly covered Shahe. Furthermore, sensitivity tests indicated that reducing emissions by 20%, 40%, and 60% could lead to a decrease in the mass concentration of PM2.5 of of 12.0%, 23.8%, and 35.5%, respectively.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , China , Ciudades , Monitoreo del Ambiente , Material Particulado/análisis , Estaciones del Año
6.
J Environ Sci (China) ; 103: 20-32, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33743902

RESUMEN

The region along the Taihang Mountains in the North China Plain (NCP) is characterized by serious fine particle pollution. To clarify the formation mechanism and controlling factors, an observational study was conducted to investigate the physical and chemical properties of the fine particulate matter in Jiaozuo city, China. Mass concentrations of the water-soluble ions (WSIs) in PM2.5 and gaseous pollutant precursors were measured on an hourly basis from December 1, 2017, to February 27, 2018. The positive matrix factorization (PMF) method and the FLEXible PARTicle (FLEXPART) model were employed to identify the sources of PM2.5. The results showed that the average mass concentration of PM2.5 was 111 µg/m3 during the observation period. Among the major WSIs, sulfate, nitrate, and ammonium (SNA) constituted 62% of the total PM2.5 mass, and NO3- ranked the highest with an average contribution of 24.6%. NH4+ was abundant in most cases in Jiaozuo. According to chemical balance analysis, SO42-, NO3-, and Cl- might be present in the form of (NH4)2SO4, NH4NO3, NH4Cl, and KCl. The liquid-phase oxidation of SO2 and NO2 was severe during the haze period. The relative humidity and pH were the key factors influencing SO42- formation. We found that NO3- mainly stemmed from homogeneous gas-phase reactions in the daytime and originated from the hydrolysis of N2O5 in the nighttime, which was inconsistent with previous studies. The PMF model identified five sources of PM2.5: secondary origin (37.8%), vehicular emissions (34.7%), biomass burning (11.5%), coal combustion (9.4%), and crustal dust (6.6%).


Asunto(s)
Contaminantes Atmosféricos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , China , Ciudades , Monitoreo del Ambiente , Material Particulado/análisis , Estaciones del Año , Emisiones de Vehículos/análisis
7.
Sci Total Environ ; 739: 139791, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32535462

RESUMEN

The effect of the nonsphericity of mineral dust aerosols on its deposition and transport was investigated based on model simulation for a typical dust event over northern China from April 6 to 12, 2018. The settling velocity related to morphological change in dust size was considered in Nested Air Quality Prediction Modeling System (NAQPMS) to simulate the dust spatial distribution. Comparison of these results with observations showed that the model reproduced the temporal variability in the mass concentration of particles along the dust plume pathway. The most frequently reported aspect ratio (λ) was 1.7 ± 0.2 for Asian dust aerosols. Changing the nonsphericity of the particle from typical prolate ellipsoids (λ = 1.7) to spherical ellipsoids (λ = 1) caused an ~3% decrease in the surface dust concentration on average. For particles with diameters >5 µm, nonsphericity caused a change in the surface dust concentration up to 10%, especially at the periphery of the dust source region. The overall effects on the fine dust (<2.5 µm) were not significant. A sensitivity study using a more extreme nonspherical shape (λ = 2) showed that the differences in PM10 concentration were evident, and the surface dust concentration increased by 15 ± 5% as a result of an ~10% decrease in settling velocity. These results confirmed that the effect of the variability in the nonsphericity of Asian dust particles on their regional transport highly depended on synoptical and pollution conditions, and the adoption of a deposition value that changes over time due to this morphological variability could improve the performance of dust modeling and the assessment of climate effects on a global scale, especially for transboundary processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...