Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Med Sci ; 43(6): 1133-1150, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38015361

RESUMEN

OBJECTIVE: Pseudogenes are initially regarded as nonfunctional genomic sequences, but some pseudogenes regulate tumor initiation and progression by interacting with other genes to modulate their transcriptional activities. Olfactory receptor family 7 subfamily E member 47 pseudogene (OR7E47P) is expressed broadly in lung tissues and has been identified as a positive regulator in the tumor microenvironment (TME) of lung adenocarcinoma (LUAD). This study aimed to elucidate the correlation between OR7E47P and tumor immunity in lung squamous cell carcinoma (LUSC). METHODS: Clinical and molecular information from The Cancer Genome Atlas (TCGA) LUSC cohort was used to identify OR7E47P-related immune genes (ORIGs) by weighted gene correlation network analysis (WGCNA). Based on the ORIGs, 2 OR7E47P clusters were identified using non-negative matrix factorization (NMF) clustering, and the stability of the clustering was tested by an extreme gradient boosting classifier (XGBoost). LASSO-Cox and stepwise regressions were applied to further select prognostic ORIGs and to construct a predictive model (ORPScore) for immunotherapy. The Botling cohorts and 8 immunotherapy cohorts (the Samstein, Braun, Jung, Gide, IMvigor210, Lauss, Van Allen, and Cho cohorts) were included as independent validation cohorts. RESULTS: OR7E47P expression was positively correlated with immune cell infiltration and enrichment of immune-related pathways in LUSC. A total of 57 ORIGs were identified to classify the patients into 2 OR7E47P clusters (Cluster 1 and Cluster 2) with distinct immune, mutation, and stromal programs. Compared to Cluster 1, Cluster 2 had more infiltration by immune and stromal cells, lower mutation rates of driver genes, and higher expression of immune-related proteins. The clustering performed well in the internal and 5 external validation cohorts. Based on the 7 ORIGs (HOPX, STX2, WFS, DUSP22, SLFN13, GGCT, and CCSER2), the ORPScore was constructed to predict the prognosis and the treatment response. In addition, the ORPScore was a better prognostic factor and correlated positively with the immunotherapeutic response in cancer patients. The area under the curve values ranged from 0.584 to 0.805 in the 6 independent immunotherapy cohorts. CONCLUSION: Our study suggests a significant correlation between OR7E47P and TME modulation in LUSC. ORIGs can be applied to molecularly stratify patients, and the ORPScore may serve as a biomarker for clinical decision-making regarding individualized prognostication and immunotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/terapia , Pulmón , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Seudogenes/genética , Microambiente Tumoral/genética
2.
Curr Med Sci ; 43(4): 631-646, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37558863

RESUMEN

Cancer treatment has evolved rapidly due to major advances in tumor immunity research. However, due to the complexity, heterogeneity, and immunosuppressive microenvironment of tumors, the overall efficacy of immunotherapy is only 20%. In recent years, nanoparticles have attracted more attention in the field of cancer immunotherapy because of their remarkable advantages in biocompatibility, precise targeting, and controlled drug delivery. However, the clinical application of nanomedicine also faces many problems concerning biological safety, and the synergistic mechanism of nano-drugs with immunity remains to be elucidated. Our study summarizes the functional characteristics and regulatory mechanisms of nanoparticles in the cancer immune microenvironment and how nanoparticles activate and long-term stimulate innate immunity and adaptive immunity. Finally, the current problems and future development trends regarding the application of nanoparticles are fully discussed and prospected to promote the transformation and application of nanomedicine used in cancer treatment.


Asunto(s)
Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Inmunoterapia , Nanomedicina , Sistemas de Liberación de Medicamentos , Inmunidad Adaptativa , Microambiente Tumoral
3.
J Neuroinflammation ; 18(1): 25, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33461586

RESUMEN

Through considerable effort in research and clinical studies, the immune system has been identified as a participant in the onset and progression of brain injury after ischaemic stroke. Due to the involvement of all types of immune cells, the roles of the immune system in stroke pathology and associated effects are complicated. Past research concentrated on the functions of monocytes and neutrophils in the pathogenesis of ischaemic stroke and tried to demonstrate the mechanisms of tissue injury and protection involving these immune cells. Within the past several years, an increasing number of studies have elucidated the vital functions of T cells in the innate and adaptive immune responses in both the acute and chronic phases of ischaemic stroke. Recently, the phenotypes of T cells with proinflammatory or anti-inflammatory function have been demonstrated in detail. T cells with distinctive phenotypes can also influence cerebral inflammation through various pathways, such as regulating the immune response, interacting with brain-resident immune cells and modulating neurogenesis and angiogenesis during different phases following stroke. In view of the limited treatment options available following stroke other than tissue plasminogen activator therapy, understanding the function of immune responses, especially T cell responses, in the post-stroke recovery period can provide a new therapeutic direction. Here, we discuss the different functions and temporal evolution of T cells with different phenotypes during the acute and chronic phases of ischaemic stroke. We suggest that modulating the balance between the proinflammatory and anti-inflammatory functions of T cells with distinct phenotypes may become a potential therapeutic approach that reduces the mortality and improves the functional outcomes and prognosis of patients suffering from ischaemic stroke.


Asunto(s)
Encéfalo/inmunología , Inflamación/inmunología , Accidente Cerebrovascular Isquémico/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Encéfalo/patología , Humanos , Accidente Cerebrovascular Isquémico/patología
4.
J Nanosci Nanotechnol ; 20(12): 7495-7505, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32711619

RESUMEN

With unique 2D nanostructures and excellent properties, graphene and its derivatives are a class of advanced nanosized reinforcements for cementitious materials. Sulfonated graphene (SG), one of the most important modified graphene materials, possesses sulfonate groups on the surface and significantly improves the mechanical and thermal properties of cement-based composites. It is important to investigate the influence of SG on cement-based materials as it is a prerequisite for practical applications. Herein, SG was prepared and introduced into cement paste to investigate its influence on the rheological properties of cement paste. With the increased addition of SG, a stable slurry was gradually obtained with low fluidity and high rheological parameters. The mechanism of the SG effect on the rheological properties of cement paste was also illustrated. Because of the high specific surface area and sulfonate groups of SG nanosheets, a large amount of flocculated structure was created by the complexing effect, chemical interaction, physical interaction and mechanical interlocking between SG and hydrated/unhydrated cement particles. Furthermore, polycarboxylate ether (PCE) superplasticizer was introduced to ensure fluidity and transportability in the practical application of SG. The results in this work lay a foundation for the practical application of modified graphene in cementitious materials.

5.
iScience ; 7: 230-240, 2018 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-30267683

RESUMEN

The genome of kiwifruit (Actinidia chinensis) was sequenced previously, the first in the Actinidiaceae family. It was shown to have been affected by polyploidization events, the nature of which has been elusive. Here, we performed a reanalysis of the genome and found clear evidence of 2 tetraploidization events, with one occurring ∼50-57 million years ago (Mya) and the other ∼18-20 Mya. Two subgenomes produced by each event have been under balanced fractionation. Moreover, genes were revealed to express in a balanced way between duplicated copies of chromosomes. Besides, lowered evolutionary rates of kiwifruit genes were observed. These findings could be explained by the likely auto-tetraploidization nature of the polyploidization events. Besides, we found that polyploidy contributed to the expansion of key functional genes, e.g., vitamin C biosynthesis genes. The present work also provided an important comparative genomics resource in the Actinidiaceae and related families.

6.
Nanoscale ; 9(25): 8716-8722, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28616953

RESUMEN

The exploration of localized surface plasmon resonance (LSPR) beyond the usual visible waveband, for example within the ultraviolet (UV) or deep-ultraviolet (D-UV) regions, is of great significance due to its unique applications in secret communications and optics. However, it is still challenging to universally synthesize the corresponding metal nanostructures due to their high activity. Herein, we report a universal, eco-friendly, facile and rapid synthesis of various nano-metals encapsulated by ultrathin carbon shells, significantly with a remarkable deep-UV LSPR characteristic, via a liquid-phase laser fabrication method. Firstly, a new generation of the laser ablation in liquid (LAL) method has been developed with an emphasis on the elaborate selection of solvents to generate ultrathin carbon shells, and hence to stabilize the formed metal nanocrystals. As a result, a series of metal@carbon nanoparticles (NPs), including Cr@C, Ti@C, Fe@C, V@C, Al@C, Sn@C, Mn@C and Pd@C, can be fabricated by this modified LAL method. Interestingly, these NPs exhibit LSPR peaks in the range of 200-330 nm, which are very rare for localized surface plasmon resonance. Consequently, the UV plasmonic effects of these metal@carbon NPs were demonstrated both by the observed enhancement in UV photoluminescence (PL) from the carbon nanoshells and by the improvement of the photo-responsivity of UV GaN photodetectors. This work could provide a universal method for carbon shelled metal NPs and expand plasmonics into the D-UV waveband.

7.
Anal Biochem ; 456: 53-60, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24732113

RESUMEN

The pseudo oligonucleotide composition, or pseudo K-tuple nucleotide composition (PseKNC), can be used to represent a DNA or RNA sequence with a discrete model or vector yet still keep considerable sequence order information, particularly the global or long-range sequence order information, via the physicochemical properties of its constituent oligonucleotides. Therefore, the PseKNC approach may hold very high potential for enhancing the power in dealing with many problems in computational genomics and genome sequence analysis. However, dealing with different DNA or RNA problems may need different kinds of PseKNC. Here, we present a flexible and user-friendly web server for PseKNC (at http://lin.uestc.edu.cn/pseknc/default.aspx) by which users can easily generate many different modes of PseKNC according to their need by selecting various parameters and physicochemical properties. Furthermore, for the convenience of the vast majority of experimental scientists, a step-by-step guide is provided on how to use the current web server to generate their desired PseKNC without the need to follow the complicated mathematical equations, which are presented in this article just for the integrity of PseKNC formulation and its development. It is anticipated that the PseKNC web server will become a very useful tool in computational genomics and genome sequence analysis.


Asunto(s)
Biología Computacional/métodos , Internet , Oligonucleótidos/química , Composición de Base , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...