Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(6): e27637, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38510046

RESUMEN

Introduction: The typical functionality of astrocytes was previously shown to be disrupted by Parkinson's disease (PD), which actively regulates synaptic neurotransmission. However, the morphological changes in astrocytes wrapping glutamatergic synapses in the striatum after dopamine (DA) neuronal degeneration is unclear. Methods: We utilized a range of methodologies, encompassing the 6-hydroxydopamine (6OHDA)-induced PD model, as well as techniques such as immunohistochemistry, Western blotting, immunofluorescence and immunoelectron microscopy (IEM) to delve into the consequences of DA neuronal degeneration on the morphological attributes of perisynaptic astrocytes. Results: Our findings demonstrated a notable rise in glial fibrillary acidic protein (GFAP) + astrocyte density and an upregulation in GFAP protein expression within the striatum due to DA neuronal degeneration, coincided with the enlargement, elongation, and thickening of astrocyte protuberances. However, the expression levels of glutamate transporter 1 (GLT1) and glutamine synthetase (GS), which are related to glutamate-glutamine cycle, were significantly reduced. Double immunofluorescence and IEM results indicated that different proportions of vesicular glutamate transporter 1 (VGlut1)+ and vesicular glutamate transporter 2 (VGlut2) + terminals were wrapped by astrocytes. Additionally, DA neuronal degeneration increased the percentage and area of VGlut1+ and VGlut2+ terminals wrapped by GFAP + astrocytes in the striatum. Furthermore, we noted that DA neuronal degeneration increased the percentage of VGlut1+ and VGlut2+ axo-spinous synapses wrapped by astrocytes but had no effect on axo-dendritic synapses. Conclusion: Hence, perisynaptic astrocytes wrapping striatal glutamatergic synapses exhibit substantial morphological and functional alterations following DA neuronal degeneration making them a potential target for therapeutic interventions in PD.

2.
Front Neural Circuits ; 17: 1086873, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37187913

RESUMEN

The cerebral cortex innervates motor neurons in the anterior horn of the spinal cord by regulating of interneurons. At present, nerve tracing, immunohistochemistry, and immunoelectron microscopy are used to explore and confirm the characteristics of synaptic connections between the corticospinal tract (CST) and cervical spinal calretinin (Cr) interneurons. Our morphological results revealed that (1) biotinylated dextran amine labeled (BDA+) fibers from the cerebral cortex primarily presented a contralateral spinal distribution, with a denser distribution in the ventral horn (VH) than in the dorsal horn (DH). An electron microscope (EM) showed that BDA+ terminals formed asymmetric synapses with spinal neurons, and their mean labeling rate was not different between the DH and VH. (2) Cr-immunoreactive (Cr+) neurons were unevenly distributed throughout the spinal gray matter, and were denser and larger in the VH than in the DH. At the single labeling electron microscope (EM) level, the labeling rate of Cr+ dendrites was higher in the VH than in the DH, in which Cr+ dendrites mainly received asymmetric synaptic inputs, and between the VH and DH. (3) Immunofluorescence triple labeling showed obvious apposition points among BDA+ terminals, synaptophysin and Cr+ dendrites, with a higher density in the VH than in the DH. (4) Double labeling in EM, BDA+ terminals and Cr+ dendrites presented the same pattern, BDA+ terminals formed asymmetric synapses either with Cr+ dendrites or Cr negative (Cr-) dendrites, and Cr+ dendrites received either BDA+ terminals or BDA- synaptic inputs. The average percentage of BDA+ terminals targeting Cr+ dendrites was higher in the VH than in the DH, but the percentage of BDA+ terminals targeting Cr- dendrites was prominently higher than that targeting Cr+ dendrites. There was no difference in BDA+ terminal size. The percentage rate for Cr+ dendrites receiving BDA+ terminal inputs was lower than that receiving BDA- terminal inputs, and the BDA+ terminal size was larger than the BDA- terminal size received by Cr+ dendrites. The present morphological results suggested that spinal Cr+ interneurons are involved in the regulatory process of the cortico-spinal pathway.


Asunto(s)
Neuronas Motoras , Sinapsis , Ratas , Animales , Calbindina 2/metabolismo , Sinapsis/fisiología , Tractos Piramidales , Corteza Cerebral/metabolismo , Terminales Presinápticos/metabolismo
3.
Stress ; 25(1): 166-178, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35435121

RESUMEN

Patients with post-traumatic stress disorder (PTSD) are usually at an increased risk for chronic disorders, such as irritable bowel syndrome (IBS), characterized by hyperalgesia and allodynia, but its subsequent effect on visceral hyperalgesia and the mechanism remain unclear. The present study employed single prolonged stress (SPS), a model of PTSD-pain comorbidity, behavioral evaluation, intrathecal drug delivery, immunohistochemistry, Western blotting, and RT-PCR techniques. When detecting visceral sensitivity, the score of the abdominal withdrawal reflex (AWR) induced by graded colorectal distention (CRD) was used. The AWR score was reduced in the SPS day 1 group but increased in the SPS day 7 and SPS day 14 groups at 40 mmHg and 60 mmHg, and the score was increased significantly with EphrinB1-Fc administration. The EphB2+ cell density and EphB2 protein and mRNA levels were downregulated in the SPS day 1 group and then upregulated significantly in the SPS day 7 group; these changes were more noticeable with EphrinB1-Fc administration compared with the SPS-only group. The C-Fos-positive reaction induced by SPS was mainly localized in neurons of the spinal dorsal horn, in which the C-Fos-positive cell density and its protein and mRNA levels were upregulated on SPS days 7 and 14; these changes were statistically significant in the SPS + EphrinB1-Fc group compared with the SPS alone group. The present study confirmed the time window for the AWR value, EphB2 and C-Fos changes, and the effect of EphrinB1-Fc on these changes, which suggests that spinal cord EphB2 activation exacerbates visceral pain after SPS.


Asunto(s)
Hiperalgesia , Dolor Visceral , Animales , Hiperalgesia/genética , Hiperalgesia/metabolismo , Masculino , Proteínas Proto-Oncogénicas c-fos/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor EphB2/genética , Receptor EphB2/metabolismo , Médula Espinal/metabolismo , Estrés Psicológico , Dolor Visceral/genética , Dolor Visceral/metabolismo
4.
Neurochem Res ; 46(7): 1659-1673, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33770320

RESUMEN

Parvalbumin-immunoreactive (Parv+) interneurons is an important component of striatal GABAergic microcircuits, which receive excitatory inputs from the cortex and thalamus, and then target striatal projection neurons. The present study aimed to examine ultrastructural synaptic connection features of Parv+ neruons with cortical and thalamic input, and striatal projection neurons by using immuno-electron microscopy (immuno-EM) and immunofluorescence techniques. Our results showed that both Parv+ somas and dendrites received numerous asymmetric synaptic inputs, and Parv+ terminals formed symmetric synapses with Parv- somas, dendrites and spine bases. Most interestingly, spine bases targeted by Parv+ terminals simultaneously received excitatory inputs at their heads. Electrical stimulation of the motor cortex (M1) induced higher proportion of striatal Parv+ neurons express c-Jun than stimulation of the parafascicular nucleus (PFN), and indicated that cortical- and thalamic-inputs differentially modulate Parv+ neurons. Consistent with that, both Parv + soma and dendrites received more VGlut1+ than VGlut2+ terminals. However, the proportion of VGlut1+ terminal targeting onto Parv+ proximal and distal dendrites was not different, but VGlut2+ terminals tended to target Parv+ somas and proximal dendrites than distal dendrites. These functional and morphological results suggested excitatory cortical and thalamic glutamatergic inputs differently modulate Parv+ interneurons, which provided inhibition inputs onto striatal projection neurons. To maintain the balance between the cortex and thalamus onto Parv+ interneurons may be an important therapeutic target for neurological disorders.


Asunto(s)
Corteza Cerebral/ultraestructura , Dendritas/ultraestructura , Interneuronas/ultraestructura , Núcleos Talámicos Intralaminares/ultraestructura , Parvalbúminas/metabolismo , Sinapsis/ultraestructura , Animales , Corteza Cerebral/metabolismo , Dendritas/metabolismo , Interneuronas/metabolismo , Núcleos Talámicos Intralaminares/metabolismo , Masculino , Ratas Sprague-Dawley , Sinapsis/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
5.
Neural Regen Res ; 15(4): 724-730, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31638097

RESUMEN

Astrocytes and astrocyte-related proteins play important roles in maintaining normal brain function, and also regulate pathological processes in brain diseases and injury. However, the role of astrocytes in the dopamine-depleted striatum remains unclear. A rat model of Parkinson's disease was therefore established by injecting 10 µL 6-hydroxydopamine (2.5 µg/µL) into the right medial forebrain bundle. Immunohistochemical staining was used to detect the immunoreactivity of glial fibrillary acidic protein (GFAP), calcium-binding protein B (S100B), and signal transducer and activator of transcription 3 (STAT3) in the striatum, and to investigate the co-expression of GFAP with S100B and STAT3. Western blot assay was used to measure the protein expression of GFAP, S100B, and STAT3 in the striatum. Results demonstrated that striatal GFAP-immunoreactive cells had an astrocytic appearance under normal conditions, but that dopamine depletion induced a reactive phenotype with obvious morphological changes. The normal striatum also contained S100B and STAT3 expression. S100B-immunoreactive cells were uniform in the striatum, with round bodies and sparse, thin processes. STAT3-immunoreactive cells presented round cell bodies with sparse processes, or were darkly stained with a large cell body. Dopamine deprivation induced by 6-hydroxydopamine significantly enhanced the immunohistochemical positive reaction of S100B and STAT3. Normal striatal astrocytes expressed both S100B and STAT3. Striatal dopamine deprivation increased the number of GFAP/S100B and GFAP/STAT3 double-labeled cells, and increased the protein levels of GFAP, S100B, and STAT3. The present results suggest that morphological changes in astrocytes and changes in expression levels of astrocyte-related proteins are involved in the pathological process of striatal dopamine depletion. The study was approved by Animal Care and Use Committee of Sun Yat-sen University, China (Zhongshan Medical Ethics 2014 No. 23) on September 22, 2014.

6.
Int J Mol Med ; 44(4): 1414-1424, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31364729

RESUMEN

The balance between glutamate (cortex and thalamus) and dopamine (substantia nigra) inputs on striatal neurons is of vital importance. Dopamine deficiency, which breaks this balance and leads to the domination of cortical glutamatergic inputs, plays an important role in Parkinson's disease (PD). However, the exact impact on striatal neurons has not been fully clarified. Thus, the present study aimed to characterize the influence of corticostriatal glutamatergic inputs on striatal neurons after decortication due to dopamine depletion in rats. 6­Hydroxydopamine was injected into the right medial forebrain bundle to induce dopamine depletion, and/or ibotenic acid into the primary motor cortex to induce decortication. Subsequently, the grip strength test and Morris water maze task indicated that decortication significantly shortened the hang time and the latency that had been increased in the rats subjected to dopamine depletion. Golgi staining and electron microscopy analysis showed that the total dendritic length and dendritic spine density of the striatal neurons were decreased in the dopamine­depleted rats, whereas decortication alleviated this damage. Immunohistochemistry analysis demonstrated that decortication decreased the number of caspase­3­positive neurons in the dopamine­depleted rats. Moreover, reverse transcription­quantitative PCR and western blot analyses showed that decortication offset the upregulation of caspase­3 at both the protein and mRNA levels in the dopamine­depleted rats. In conclusion, the present study demonstrated that a relative excess of cortical glutamate inputs had a substantial impact on the pathological processes of striatal neuron lesions in PD.


Asunto(s)
Corteza Cerebral/metabolismo , Decorticación Cerebral , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Animales , Conducta Animal , Biomarcadores , Corteza Cerebral/fisiopatología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/ultraestructura , Inmunohistoquímica , Aprendizaje por Laberinto , Fuerza Muscular , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/fisiopatología , Ratas
7.
Neurochem Res ; 44(5): 1079-1089, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30715657

RESUMEN

Dopaminergic neuron degeneration is known to give rise to dendrite injury and spine loss of striatal neurons, however, changes of intrastriatal glutamatergic terminals and their synapses after 6-hydroxydopamine (6OHDA)-induced dopamine (DA)-depletion remains controversial. To confirm the effect of striatal DA-depletion on the morphology and protein levels of corticostriatal and thalamostriatal glutamatergic terminals and synapses, immunohistochemistry, immuno-electron microscope (EM), western blotting techniques were performed on Parkinson's disease rat models in this study. The experimental results of this study showed that: (1) 6OHDA-induced DA-depletion resulted in a remarkable increase of Vesicular glutamate transporter 1 (VGlut1) + and Vesicular glutamate transporter 2 (VGlut2)+ terminal densities at both the light microscope (LM) and EM levels, and VGlut1+ and VGlut2+ terminal sizes were shown to be enlarged by immuno-EM; (2) Striatal DA-depletion resulted in a decrease in both the total and axospinous terminal fractions of VGlut1+ terminals, but the axodendritic terminal fraction was not significantly different from the control group. However, total, axospinous and axodendritic terminal fractions for VGlut2+ terminals declined significantly after striatal DA-depletion. (3) Western blotting data showed that striatal DA-depletion up-regulated the expression levels of the VGlut1 and VGlut2 proteins. These results suggest that 6OHDA-induced DA-depletion affects corticostriatal and thalamostriatal glutamatergic synaptic inputs, which are involved in the pathological process of striatal neuron injury induced by DA-depletion.


Asunto(s)
Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Enfermedad de Parkinson/metabolismo , Sinapsis/metabolismo , Animales , Corteza Cerebral/metabolismo , Espinas Dendríticas/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neostriado/metabolismo , Terminales Presinápticos/metabolismo , Ratas , Tálamo/metabolismo
8.
Neurochem Int ; 118: 14-22, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29674121

RESUMEN

Striatal-direct and -indirect Pathway Neurons showed different vulnerability in basal ganglia disorders. Therefore, present study aimed to examine and compare characteristic changes of densities, protein and mRNA levels of soma, dendrites, and spines between striatal-direct and -indirect pathway neurons after DA depletion by using immunohistochemistry, Western blotting, real-time PCR and immunoelectron microscopy techniques. Experimental results showed that: 1) 6OHDA-induced DA depletion decreased the soma density of striatal-direct pathway neurons (SP+), but no significant changes for striatal-indirect pathway neurons (ENK+). 2) DA depletion resulted in a decline of dendrite density for both striatal-direct (D1+) and -indirect (D2+) pathway neurons, and D2+ dendritic density declined more obviously. At the ultrastructure level, the densities of D1+ and D2+ dendritic spines reduced in the 6OHDA groups compared with their control groups, but the density of D2+ dendritic spines reduced more significant than that of D1. 3) Striatal DA depletion down-regulated protein and mRNA expression levels of SP and D1, on the contrary, ENK and D2 protein and mRNA levels of indirect pathway neurons were up-regulated significantly. Present results suggested that indirect pathway neurons be more sensitive to 6OHDA-induced DA depletion.


Asunto(s)
Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Neuronas/metabolismo , Trastornos Parkinsonianos/metabolismo , Transducción de Señal/fisiología , Animales , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/patología , Masculino , Neuronas/efectos de los fármacos , Neuronas/patología , Oxidopamina/toxicidad , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/patología , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
9.
Exp Neurol ; 296: 74-82, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28729113

RESUMEN

Bortezomib is a first-line chemotherapeutic drug widely used for multiple myeloma and other nonsolid malignancies. Although bortezomib-induced persistent pain is easily diagnosed in clinic, the pathogenic mechanism remains unclear. Here, we studied this issue with use of a rat model of systemic intraperitoneal administration of bortezomib for consecutive 5days. Consisted with our previous study, we found that bortezomib treatment markedly induced mechanical allodynia in rats. Furthermore, we first found that bortezomib treatment significantly induced the upregulation of methylglyoxal in spinal dorsal horn of rats. Spinal local application of methylglyoxal also induced mechanical allodynia and central sensitization in normal rats. Moreover, administration of bortezomib upregulated the expression of receptors for advanced glycation end products (RAGE) and phosphorylated STAT3 (p-STAT3) in dorsal horn. Importantly, intrathecal injection of metformin, a known scavenger of methylglyoxal, significantly attenuated the upregulation of methylglyoxal and RAGE in dorsal horn, central sensitization and mechanical allodynia induced by bortezomib treatment, and blockage of RAGE also prevented the upregulation of p-STAT3, central sensitization and mechanical allodynia induced by bortezomib treatment. In addition, inhibition of STAT3 activity by S3I-201 attenuated bortezomib-induced mechanical allodynia and central sensitization. Local knockdown of STAT3 also ameliorated the mechanical allodynia induced by bortezomib administration. Our results suggest that accumulation of methylglyoxal may activate the RAGE/STAT3 signaling pathway in dorsal horn, and contributes to the spinal central sensitization and persistent pain induced by bortezomib treatment.


Asunto(s)
Bortezomib/toxicidad , Sensibilización del Sistema Nervioso Central/efectos de los fármacos , Dolor/inducido químicamente , Dolor/tratamiento farmacológico , Piruvaldehído/farmacología , Piruvaldehído/uso terapéutico , Médula Espinal/fisiopatología , Animales , Antineoplásicos/toxicidad , Modelos Animales de Enfermedad , Masculino , Fibras Nerviosas Amielínicas/efectos de los fármacos , Fibras Nerviosas Amielínicas/fisiología , Dolor/patología , Dimensión del Dolor/efectos de los fármacos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor para Productos Finales de Glicación Avanzada/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Médula Espinal/citología , Médula Espinal/efectos de los fármacos , Potenciales Sinápticos/efectos de los fármacos , Potenciales Sinápticos/genética , Transducción Genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
10.
Korean J Parasitol ; 55(3): 267-278, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28719951

RESUMEN

Angiostrongylus cantonensis invades the central nervous system (CNS) of humans to induce eosinophilic meningitis and meningoencephalitis and leads to persistent headache, cognitive dysfunction, and ataxic gait. Infected mice (nonpermissive host), admittedly, suffer more serious pathological injuries than rats (permissive host). However, the pathological basis of these manifestations is incompletely elucidated. In this study, the behavioral test, histological and immunohistochemical techniques, and analysis of apoptotic gene expression, especially caspase-3, were conducted. The movement and motor coordination were investigated at week 2 post infection (PI) and week 3 PI in mice and rats, respectively. The cognitive impairs could be found in mice at week 2 PI but not in rats. The plaque-like lesion, perivascular cuffing of inflammatory cells, and dilated vessels within the cerebral cortex and hippocampus were more serious in mice than in rats at week 3 PI. Transcriptomic analysis showed activated extrinsic apoptotic pathway through increased expression of TNFR1 and caspase-8 in mice CNS. Immunohistochemical and double-labeling for NeuN and caspase-3 indicated the dramatically increased expression of caspase-3 in neuron of the cerebral cortex and hippocampus in mice but not in rats. Furthermore, western-blotting results showed high expression of cleaved caspase-3 proteins in mice but relatively low expression in rats. Thus, extrinsic apoptotic pathway participated in neuronal apoptosis might be the pathological basis of distinct behavioral dysfunctions in rodents with A. cantonensis infection. It provides the evidences of a primary molecular mechanism for the behavioral dysfunction and paves the ways to clinical diagnosis and therapy for A. cantonensis infection.


Asunto(s)
Apoptosis , Conducta Animal , Sistema Nervioso Central/patología , Sistema Nervioso Central/parasitología , Trastornos Mentales/patología , Infecciones por Strongylida/patología , Infecciones por Strongylida/parasitología , Animales , Apoptosis/genética , Caspasa 3/genética , Caspasa 3/metabolismo , Sistema Nervioso Central/metabolismo , Cognición , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Humanos , Trastornos Mentales/etiología , Ratones Endogámicos BALB C , Ratas Sprague-Dawley , Infecciones por Strongylida/complicaciones
11.
PLoS One ; 11(9): e0162969, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27658248

RESUMEN

Interneurons are involved in the physiological function and the pathomechanism of the spinal cord. Present study aimed to examine and compare the characteristics of Cr+, Calb+ and Parv+ interneurons in morphology and distribution by using immunhistochemical and Western blot techniques. Results showed that 1) Cr-Calb presented a higher co-existence rate than that of Cr-Parv, and both of them were higher in the ventral horn than in the dosal horn; 2) Cr+, Calb+ and Parv+ neurons distributing zonally in the superficial dosal horn were small-sized. Parv+ neuronswere the largest, and Cr+ and Calb+ neurons were higher density among them. In the deep dorsal horn, Parv+ neurons were mainly located in nucleus thoracicus and the remaining scatteredly distributed. Cr+ neuronal size was the largest, and Calb+ neurons were the least among three interneuron types; 3) Cr+, Calb+ and Parv+ neurons of ventral horns displayed polygonal, round and fusiform, and Cr+ and Parv+ neurons were mainly distributed in the deep layer, but Calb+ neurons mainly in the superficial layer. Cr+ neurons were the largest, and distributed more in ventral horns than in dorsal horns; 4) in the dorsal horn of lumbar cords, Calb protein levels was the highest, but Parv protein level in ventral horns was the highest among the three protein types. Present results suggested that the morphological characteristics of three interneuron types imply their physiological function and pathomechanism relevance.

12.
J Mol Neurosci ; 60(2): 267-75, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27501707

RESUMEN

Oxidative stress is closely involved in neurodegenerative diseases. The present study aimed to examine the effect of anti-oxidant DHM (dihydromyricetin) on 3NP (3-nitropropionic acid) -induced behavioral deficits of experimental rats and striatal histopathological injury by using behavioral, imaging, biochemistry, histochemistry and molecular biology technologies. The experimental results showed that both motor dysfunctions and learning and memory impairments induced by 3NP were significantly reduced after DHM treatment. 3NP-induced striatal metabolic abnormality was also remarkably improved by DHM treatment, showed as the increased glucose metabolism in PET/CT scan, decreased MDA (malondialdehyde) and increased SOD (superoxide dismutase) activity in enzyme histochemical staining. In addition, the cell apoptosis was evidently detected in the striatum of the 3NP group, while in the 3NP + DHM group, the number of apoptotic cells was remarkably reduced. 3NP treatment obviously induced down-regulation of Bcl-2, and up-regulations of Bax and Cleaved Caspase-3, while these changes were significantly reversed by DHM treatment. The present results suggested that DHM showed its protective effect by anti-oxidant and anti-apoptosis mechanisms.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Flavonoles/uso terapéutico , Locomoción , Aprendizaje por Laberinto , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Animales , Apoptosis , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/metabolismo , Flavonoles/farmacología , Masculino , Malondialdehído/metabolismo , Enfermedades Neurodegenerativas/etiología , Fármacos Neuroprotectores/farmacología , Nitrocompuestos/toxicidad , Estrés Oxidativo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Propionatos/toxicidad , Ratas , Ratas Sprague-Dawley , Superóxido Dismutasa/metabolismo
13.
Neural Regen Res ; 11(12): 1969-1975, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28197194

RESUMEN

Striatal neurons can be either projection neurons or interneurons, with each type exhibiting distinct susceptibility to various types of brain damage. In this study, 6-hydroxydopamine was injected into the right medial forebrain bundle to induce dopamine depletion, and/or ibotenic acid was injected into the M1 cortex to induce motor cortex lesions. Immunohistochemistry and western blot assay showed that dopaminergic depletion results in significant loss of striatal projection neurons marked by dopamine- and cyclic adenosine monophosphate-regulated phosphoprotein, molecular weight 32 kDa, calbindin, and µ-opioid receptor, while cortical lesions reversed these pathological changes. After dopaminergic deletion, the number of neuropeptide Y-positive striatal interneurons markedly increased, which was also inhibited by cortical lesioning. No noticeable change in the number of parvalbumin-positive interneurons was found in 6-hydroxydopamine-treated rats. Striatal projection neurons and interneurons show different susceptibility to dopaminergic depletion. Further, cortical lesions inhibit striatal dysfunction and damage induced by 6-hydroxydopamine, which provides a new possibility for clinical treatment of Parkinson's disease.

14.
Neurochem Res ; 41(4): 707-14, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26586406

RESUMEN

Our previous studies had confirmed that both 3-NP and MCAO induced the behavioral defect as well as striatal neuronal injury and loss in experimental rats. This study aimed to examine different response forms of striatal astrocyte and microglia in 3-NP and MCAO rat models. The present results showed that the immunoreaction for GFAP was extremely weak in the lesioned core of striatum, but in the transition zone of 3-NP model and the penumbra zone of MCAO model, GFAP+ cells showed strong hypertrophic and proliferative changes. Statistical analysis for the number, size and integral optical density (IOD) of GFAP+ cells showed significant differences when compared with their controls and compared between the core and the transition zone or the penumbra zone, respectively, but no differences between the 3-NP and MCAO groups. However, Iba-1+ cells showed obvious hypertrophy and proliferation in the injured striatum in the 3-NP and the MCAO models, especially in the transition zone of 3-NP model and the penumbra zone of MCAO model. These Iba-1+ cells displayed two characteristic forms as branching cells with thick processes and amoeboid cells with thin processes. Statistical analysis showed that the number, size and IOD of Iba-1+ cells were significantly increased in the cores and the transition zone of 3-NP group and the penumbra zone of MCAO group than that of the controls, and the immune response of Iba-1 was stronger in the MCAO group than in the 3-NP group. The present results suggested that characteristic responses of astrocyte and microglia in the 3-NP and the MCAO models display their different effects on the pathological process of brain injury.


Asunto(s)
Astrocitos/patología , Cuerpo Estriado/patología , Infarto de la Arteria Cerebral Media/patología , Microglía/patología , Nitrocompuestos/farmacología , Propionatos/farmacología , Animales , Astrocitos/efectos de los fármacos , Proteínas de Unión al Calcio/metabolismo , Recuento de Células , Proliferación Celular , Tamaño de la Célula , Cuerpo Estriado/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , Proteínas de Microfilamentos/metabolismo , Microglía/efectos de los fármacos , Ratas Sprague-Dawley
15.
Front Syst Neurosci ; 9: 51, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25926776

RESUMEN

In prior studies, we described the differential organization of corticostriatal and thalamostriatal inputs to the spines of direct pathway (dSPNs) and indirect pathway striatal projection neurons (iSPNs) of the matrix compartment. In the present electron microscopic (EM) analysis, we have refined understanding of the relative amounts of cortical axospinous vs. axodendritic input to the two types of SPNs. Of note, we found that individual dSPNs receive about twice as many axospinous synaptic terminals from IT-type (intratelencephalically projecting) cortical neurons as they do from PT-type (pyramidal tract projecting) cortical neurons. We also found that PT-type axospinous synaptic terminals were about 1.5 times as common on individual iSPNs as IT-type axospinous synaptic terminals. Overall, a higher percentage of IT-type terminals contacted dSPN than iSPN spines, while a higher percentage of PT-type terminals contacted iSPN than dSPN spines. Notably, IT-type axospinous synaptic terminals were significantly larger on iSPN spines than on dSPN spines. By contrast to axospinous input, the axodendritic PT-type input to dSPNs was more substantial than that to iSPNs, and the axodendritic IT-type input appeared to be meager and comparable for both SPN types. The prominent axodendritic PT-type input to dSPNs may accentuate their PT-type responsiveness, and the large size of axospinous IT-type terminals on iSPNs may accentuate their IT-type responsiveness. Using transneuronal labeling with rabies virus to selectively label the cortical neurons with direct input to the dSPNs projecting to the substantia nigra pars reticulata, we found that the input predominantly arose from neurons in the upper layers of motor cortices, in which IT-type perikarya predominate. The differential cortical input to SPNs is likely to play key roles in motor control and motor learning.

16.
Parasitol Res ; 114(9): 3247-54, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26002828

RESUMEN

Angiostrongylus cantonensis (A. cantonensis) is a rodent nematode. Adult worms of A. cantonensis live in the pulmonary arteries of rats; humans are non-permissive hosts like the mice. The larva cannot develop into an adult worm and only causes serious eosinophilic meningitis or meningo-encephalitis if humans or mice eat food containing larva of A. cantonensis in the third stage. The differing consequences largely depend on differing immune responses of hosts to parasite during A. cantonensis invasion and development. To further understand the reasons why mice and rats attain different outcomes in A. cantonensis infection, we used the HE staining to observe the pathological changes of infected mice and rats. In addition, we measured mRNA levels of some cytokines (IL-5, IL-6, IL-13, Eotaxin, IL-4, IL-10, TGF-ß, IFN-γ, IL-17A, TNF-α, IL-1ß, and iNOS) in brain tissues of mice and rats by real-time PCR. The result showed that brain inflammation in mice was more serious than in rats. Meanwhile, mRNA expression levels of IL-6, IL-1ß, TNF-α, and iNOS increased after mice were infected. In contrast, mRNA levels of these cytokines in rats brain tissues decreased at post- infection 21 days. These cytokines mostly were secreted by activated microglia in central nervous system. Microglia of mice and rats were showed by Iba-1 (microglia marker) staining. In micee brains, microglia got together and had more significant activation than in rats brains. The results demonstrate that mice and rats have different CNS inflammation after infection by A. cantonensis, and it is in line with other researchers' reported findings. In conclusion, it is suggested that microglia activation is probably to be one of the most important factors in angiostrongyliasis from our study.


Asunto(s)
Angiostrongylus cantonensis , Encefalitis/parasitología , Inflamación/parasitología , Infecciones por Strongylida/parasitología , Adulto , Animales , Encéfalo/parasitología , Encéfalo/patología , Citocinas/metabolismo , Encefalitis/patología , Humanos , Inflamación/patología , Meningitis/patología , Ratones , Microglía/parasitología , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Coloración y Etiquetado , Infecciones por Strongylida/patología
17.
Neurodegener Dis ; 14(3): 139-50, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25342207

RESUMEN

BACKGROUND: Melatonin has shown a protective effect against various oxidative damages in the nervous system. Our previous studies have also confirmed its effect on behavioral dysfunction of experimental rats and injury of striatal interneurons induced by 3-nitropropionic acid. The present study aimed to further determine the effect of melatonin on the injury of striatal projection neurons induced by 3-nitropropionic acid. METHODS: Classic histology, immunohistochemistry, Western blotting and immunoelectron microscopy were applied in this study. RESULTS: The results were as follows: (1) in the striatum, 3-nitropropionic acid induced a clear lesion area with a transition zone around it, in which both D1+ and D2+ fibers were decreased significantly. However, in the group with melatonin treatment, the striatal lesion area was smaller than in the 3-nitropropionic acid group and the loss of D1+ and D2+ fibers was less pronounced than in the 3-nitropropionic acid group. (2) Histochemical results showed that the dendritic spine density of striatal projection neurons was decreased more seriously after 3-nitropropionic acid treatment, whereas the loss of dendritic spines was less marked in the melatonin-treated group than in the 3- nitropropionic acid group. Immunoelectron microscopy showed that the density of D1+ and D2+ dendrites and spines was significantly decreased in the 3-nitropropionic acid group, and the loss of D1+ and D2+ spines as well as D2+ dendrites was significantly reversed by melatonin administration. (3) Western blotting showed that the expression level of projection neuron protein markers decreased more significantly in the 3-nitropropionic acid group than in the control group and increased significantly in the melatonin-treated group. CONCLUSIONS: The present results suggest that 3-nitropropionic acid induces serious injury of striatal projection neurons and that melatonin effectively protects against this pathological damage.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Melatonina/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Nitrocompuestos/toxicidad , Propionatos/toxicidad , Animales , Western Blotting , Cuerpo Estriado/patología , Cuerpo Estriado/fisiopatología , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/patología , Espinas Dendríticas/fisiología , Inmunohistoquímica , Masculino , Microscopía Inmunoelectrónica , Neuronas/patología , Neuronas/fisiología , Ratas Sprague-Dawley
18.
Behav Brain Res ; 266: 37-45, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24613235

RESUMEN

In this study, the motor deficit, cognition impairment and the vulnerability of different striatal interneurons to the 6-hydroxydopamine (6-OHDA)-induced excitotoxicity in unilateral medial forebrain bundle (MFB) lesion rats were analyzed by employing behavioral test, immunohistochemistry and Western blot methods. The apomorphine-induced rotation after MFB lesion was used as a valid criterion of motor deficit. The 6-OHDA damaged rats had limb rigidity with longer hang time compared to the controls in the grip strength test. Cognitive and mnemonic deficits of rats with unilateral MFB lesion were observed by the water maze task. The MFB lesion resulted in a significant loss of tyrosine hydroxylase (TH)+ cells in the contralateral striatum or substantia nigra. After dopaminergic depletion, the numbers of calretinin (Cr)+ and choline acetyltransferase (ChAT)+ interneurons were notably reduced while these of neuropeptide Y (NPY)+ were markedly increased in the striatum. No noticeable change in the number of parvalbumin (Parv)+ interneurons was found in 6-OHDA rats. In addition, the fiber densities for each individual interneuron were increased after 6-OHDA treatment, especially for the fiber densities of Parv+ and Cr+ interneurons. The Western blot analysis further confirmed the results described above. In conclusion, the MFB lesion model is suitable to mimic Parkinson's disease (PD), and our results are helpful for further understanding the underlying mechanism and the specific functions of various striatal interneurons in the pathological process of PD.


Asunto(s)
Adrenérgicos/toxicidad , Trastornos del Conocimiento/inducido químicamente , Cuerpo Estriado/patología , Interneuronas/clasificación , Interneuronas/patología , Haz Prosencefálico Medial/lesiones , Trastornos del Movimiento/etiología , Oxidopamina/toxicidad , Animales , Apomorfina , Colina O-Acetiltransferasa/metabolismo , Trastornos del Conocimiento/patología , Trastornos del Conocimiento/fisiopatología , Cuerpo Estriado/efectos de los fármacos , Creatina/metabolismo , Interneuronas/metabolismo , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Haz Prosencefálico Medial/fisiología , Trastornos del Movimiento/patología , Fuerza Muscular/efectos de los fármacos , Neuropéptido Y/metabolismo , Parvalbúminas/metabolismo , Ratas , Ratas Sprague-Dawley , Conducta Espacial/efectos de los fármacos , Tirosina 3-Monooxigenasa/metabolismo
19.
PLoS One ; 9(3): e91512, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24632560

RESUMEN

Huntington's disease (HD) is a neurological degenerative disease and quinolinic acid (QA) has been used to establish HD model in animals through the mechanism of excitotoxicity. Yet the specific pathological changes and the underlying mechanisms are not fully elucidated. We aimed to reveal the specific morphological changes of different striatal neurons in the HD model. Sprague-Dawley (SD) rats were subjected to unilaterally intrastriatal injections of QA to mimic the HD model. Behavioral tests, histochemical and immunhistochemical stainings as well as Western blots were applied in the present study. The results showed that QA-treated rats had obvious motor and cognitive impairments when compared with the control group. Immunohistochemical detection showed a great loss of NeuN+ neurons and Darpp32+ projection neurons in the transition zone in the QA group when compared with the control group. The numbers of parvalbumin (Parv)+ and neuropeptide Y (NPY)+ interneurons were both significantly reduced while those of calretinin (Cr)+ and choline acetyltransferase (ChAT)+ were not changed notably in the transition zone in the QA group when compared to the controls. Parv+, NPY+ and ChAT+ interneurons were not significantly increased in fiber density while Cr+ neurons displayed an obvious increase in fiber density in the transition zone in QA-treated rats. The varicosity densities of Parv+, Cr+ and NPY+ interneurons were all raised in the transition zone after QA treatment. In conclusion, the present study revealed that QA induced obvious behavioral changes as well as a general loss of striatal projection neurons and specific morphological changes in different striatal interneurons, which may help further explain the underlying mechanisms and the specific functions of various striatal neurons in the pathological process of HD.


Asunto(s)
Cuerpo Estriado/citología , Cuerpo Estriado/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Ácido Quinolínico/farmacología , Animales , Conducta Animal/efectos de los fármacos , Recuento de Células , Inmunohistoquímica , Interneuronas/citología , Interneuronas/efectos de los fármacos , Interneuronas/patología , Masculino , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Neuronas/patología , Ratas
20.
J Mol Neurosci ; 53(1): 117-24, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24390959

RESUMEN

Erythropoietin (EPO) may become a potential therapeutic candidate for the treatment of the neurodegenerative disorder -- Parkinson's disease (PD), since EPO has been found to prevent neuron apoptosis through the activation of cell survival signalling. However, the underlying mechanisms of how EPO exerts its neuroprotective effect are not fully elucidated. Here we investigated the mechanism by which EPO suppressed 6-hydroxydopamine (6-OHDA)-induced neuron death in in vitro and in vivo models of PD. EPO knockdown conferred 6-OHDA-induced cytotoxicity. This effect was reversed by EPO administration. Treatment of PC12 cells with EPO greatly diminished the toxicity induced by 6-OHDA in a dose- and time-dependent manner. EPO effectively reduced apoptosis of striatal neurons and induced a significant improvement on the neurological function score in the rat models of PD. Furthermore, EPO increased the expression of phosphorylated Akt and phosphorylated FoxO3a, and abrogated the 6-OHDA-induced dysregulation of Bcl-2, Bax and Caspase-3 in PC12 cells and in striatal neurons. Meanwhile, the EPO-dependent neuroprotection was notably reversed by pretreatment with LY294002, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K). Our data suggest that PI3K/Akt/FoxO3a signalling pathway may be a possible mechanism involved in the neuroprotective effect of EPO in PD.


Asunto(s)
Eritropoyetina/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Transducción de Señal , Animales , Apoptosis/efectos de los fármacos , Cromonas/farmacología , Eritropoyetina/farmacología , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/metabolismo , Locomoción , Masculino , Morfolinas/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Oxidopamina/toxicidad , Células PC12 , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA