Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 414
Filtrar
1.
Front Chem ; 12: 1441539, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39144699

RESUMEN

Ferrocenyl conjugated oxazepine/quinoline derivatives were presented through the reaction of hexadehydro-Diels-Alder (HDDA) generated arynes with ferrocenyl oxazolines under mild conditions via ring-expanding or rearrangement processes. Water molecule participated in this unexpected rearrangement process to produce quinoline skeletons, and DFT calculations supported a ring-expanding and intramolecular hydrogen migration process for the formation of oxazepine derivatives. Two variants of this chemistry, expanded the reactivity between ferrocenyl conjugated substances and arynes, further providing an innovative approach for the synthesis of ferrocene derivatives.

2.
J Colloid Interface Sci ; 677(Pt B): 271-283, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39146815

RESUMEN

The task of creating a remarkably stable and effective electrochemical catalyst for efficient hydrogen evolution is arduous, primarily due to the multitude of factors that need to be taken into account for the industrial utilization of Pt. In this work, hybrid formation through in-situ reduction of Pt onto biogenic porous silica (Pt-SiO2) is tested for its use as an efficient catalyst for hydrogen production. Exceptionally high electrocatalytic activity and excellent reusability of catalysts up to 200 cycles have been demonstrated. Pt-SiO2 with low Pt content of 0.48 to 0.82 at% with active catalytic sites exhibit superior catalytic activity with a Tafel slope of 22 mV dec-1 and an overpotential of 28 mV (vs. RHE at 10 mA cm-2) as compared to the Pt wire and previously reported bare Pt-SiO2 (0.65 at% and 0.48 at% of Pt), and hybrid (Pt/Ag) structures formed onto two different biogenic porous SiO2 substrates. The best catalytic performance of the Pt1Ag3 cluster, representing a low Pt concentration, has been validated by Density Functional Theory (DFT) calculations. Here, the high production from the Pt1Ag3 cluster is assigned to the mutual synergistic effect between Pt/Ag atoms. The Pt atoms transfer the excess charge to the nearest Ag neighbors inside the cluster, facilitating hydrogen diffusion on the activated sites. These important findings authenticate the superior hydrogen production at reduced Pt concentration on amine-functionalized biogenic porous silica.

3.
Med ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39163857

RESUMEN

BACKGROUND: Digital subtraction angiography (DSA) devices are commonly used in numerous interventional procedures across various parts of the body, necessitating multiple scans per procedure, which results in significant radiation exposure for both doctors and patients. Inspired by generative artificial intelligence techniques, this study proposes GenDSA, a large-scale pretrained multi-frame generative model-based real-time and low-dose DSA imaging system. METHODS: GenDSA was developed to generate 1-, 2-, and 3-frame sequences following each real frame. A large-scale dataset comprising ∼3 million DSA images from 27,117 patients across 10 hospitals was constructed to pretrain, fine-tune, and validate GenDSA. Two other datasets from 25 hospitals were used for evaluation. Objective evaluations included SSIM and PSNR. Five interventional radiologists independently assessed the quality of the generated frames using the Likert scale and visual Turing test. Scoring consistency among the radiologists was measured using the Kendall coefficient of concordance (W). The Fleiss' kappa values were used for inter-rater agreement analysis for visual Turing tests. FINDINGS: Using only one-third of the clinical radiation dose, videos generated by GenDSA were perfectly consistent with real videos. Objective evaluations demonstrated that GenDSA's performance (PSNR = 36.83, SSIM = 0.911, generation time = 0.07 s/frame) surpassed state-of-the-art algorithms. Subjective ratings and statistical results from five doctors indicated no significant difference between real and generated videos. Furthermore, the generated videos were comparable to real videos in overall quality (4.905 vs. 4.935) and lesion assessment (4.825 vs. 4.860). CONCLUSIONS: With clear clinical and translational values, the developed GenDSA can significantly reduce radiation damage to both doctors and patients during DSA-guided procedures. FUNDING: This study was supported by the National Key R&D Program and the National Natural Science Foundation of China.

4.
Environ Sci Technol ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136294

RESUMEN

China is confronting the dual challenges of air pollution and climate change, mandating the co-control of air pollutants and CO2 emissions from their shared sources. Here we identify key sources for co-control that prioritize the mitigation of PM2.5-related health burdens, given the homogeneous impacts of CO2 emissions from various sources. By applying an integrated analysis framework that consists of a detailed emission inventory, a chemical transport model, a multisource fused dataset, and epidemiological concentration-response functions, we systematically evaluate the contribution of emissions from 390 sources (30 provinces and 13 socioeconomic sectors) to PM2.5-related health impacts and CO2 emissions, as well as the marginal health benefits of CO2 abatement across China. The estimated source-specific contributions exhibit substantial disparities, with the marginal benefits varying by 3 orders of magnitude. The rural residential, transportation, metal, and power and heating sectors emerge as pivotal sources for co-control, with regard to their relatively large marginal benefits or the sectoral total benefits. In addition, populous and heavily industrialized provinces such as Shandong and Henan are identified as the key regions for co-control. Our study highlights the significance of incorporating health benefits into formulating air pollution and carbon co-control strategies for improving the overall social welfare.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39161311

RESUMEN

Visualization of multiple targets in living cells is important for understanding complex biological processes, but it still faces difficulties, such as complex operation, difficulty in multiplexing, and expensive equipment. Here, we developed a nanoplatform integrating a nucleic acid aptamer and DNA nanotechnology for living cell imaging. Aptamer-based recognition probes (RPs) were synthesized through rolling circle amplification, which were further self-assembled into DNA nanoflowers encapsulated by an aptamer loop. The signal probes (SPs) were obtained by conjugation of multicolor emission carbon quantum dots with oligonucleotides complementary to RPs. Through base pairing, RPs and SPs were hybridized to generate aptamer sgc8-, AS1411-, and Apt-based imaging systems. They were used for individual/simultaneous imaging of cellular membrane protein PTK7, nucleolin, and adenosine triphosphate (ATP) molecules. Fluorescence imaging and intensity analysis showed that the living cell imaging system can not only specifically recognize and efficiently bind their respective targets but also provide a 5-10-fold signal amplification. Cell-cycle-dependent distribution of nucleolin and concentration-dependent fluorescence intensity of ATP demonstrated the utility of the system for tracking changes in cellular status. Overall, this system shows the potential to be a simple, low-cost, highly selective, and sensitive living cell imaging platform.

6.
Environ Sci Ecotechnol ; 22: 100448, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39104554

RESUMEN

Due to the transboundary nature of air pollutants, a province's efforts to improve air quality can reduce PM2.5 concentration in the surrounding area. The inter-provincial PM2.5 pollution transport could bring great challenges to related environmental management work, such as financial fund allocation and subsidy policy formulation. Herein, we examined the transport characteristics of PM2.5 pollution across provinces in 2013 and 2020 via chemical transport modeling and then monetized inter-provincial contributions of PM2.5 improvement based on pollutant emission control costs. We found that approximately 60% of the PM2.5 pollution was from local sources, while the remaining 40% originated from outside provinces. Furthermore, about 1011 billion RMB of provincial air pollutant abatement costs contributed to the PM2.5 concentration decline in other provinces during 2013-2020, accounting for 41.2% of the total abatement costs. Provinces with lower unit improvement costs for PM2.5, such as Jiangsu, Hebei, and Shandong, were major contributors, while Guangdong, Guangxi, and Fujian, bearing higher unit costs, were among the main beneficiaries. Our study identifies provinces that contribute to air quality improvement in other provinces, have high economic efficiency, and provide a quantitative framework for determining inter-provincial compensations. This study also reveals the uneven distribution of pollution abatement costs (PM2.5 improvement/abatement costs) due to transboundary PM2.5 transport, calling for adopting inter-provincial economic compensation policies. Such mechanisms ensure equitable cost-sharing and effective regional air quality management.

7.
Oral Oncol ; 158: 106986, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39137489

RESUMEN

Immunotherapy has developed into an important modality of modern cancer treatment. Unfortunately, checkpoint inhibitor immunotherapies are currently delivered systemically and require frequent administration, which can result in toxicity and severe, sometimes fatal, adverse events. Localized delivery of immunomodulators for oral cancer and oral potentially malignant disorders offers the promise of maximum therapeutic potential and reduced systemic adverse effects. This review will discuss the limitations of current standard-of-care systemic therapies and highlight research advances in localized, intratumoral delivery platforms for immunotherapy for oral cancer and oral potentially malignant disorders.

8.
BMC Pediatr ; 24(1): 517, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127642

RESUMEN

BACKGROUND: BCR::ABL1-like or Philadelphia chromosome-like (Ph-like) acute lymphoblastic leukemia (ALL) was first reported in 2009. Ph-like ALL is characterized by gene signature similar to Philadelphia chromosome ALL, but without BCR::ABL1 fusions. Molecularly, Ph-like ALL is divided into seven categories, with CRLF2 and ABL-class rearrangements being the two most common subtypes, exhibiting alterations in distinct downstream signaling cascades. CASE PRESENTATION: We report a rare case of pediatric Ph-like ALL with concomitant CRLF2 and ABL1 rearrangements. CRLF2 was fused with P2RY8, its most common fusion partner, whereas ABL1 was fused with MYO18B, a novel fusion partner that has not been previously reported. The 4-year-old female patient was treated using the national multicenter CCCG-ALL-2020 protocol with the addition of dasatinib at the end of induction when ABL1 rearrangement was confirmed by RNA-seq. Morphologically and molecularly, the patient remained in continuous remission until the last follow-up. To the best of our knowledge, this is the first case of Ph-like ALL harboring two distinct rearrangement categories. CONCLUSIONS: Our results identified that ABL1 rearrangement and CRLF2 rearrangement can coexist. The application of FISH, whole transcription sequencing, PCR can help us to have a more comprehensive understanding of ALL cytogenetics and molecular biology. Further studies are needed to explore the role of targeted therapies in such rare clinical scenarios.


Asunto(s)
Reordenamiento Génico , Cromosoma Filadelfia , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Citocinas , Humanos , Femenino , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Preescolar , Receptores de Citocinas/genética , Proteínas Proto-Oncogénicas c-abl/genética
9.
J Comput Biol ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117342

RESUMEN

Recent technological advancements have enabled spatially resolved transcriptomic profiling but at a multicellular resolution that is more cost-effective. The task of cell type deconvolution has been introduced to disentangle discrete cell types from such multicellular spots. However, existing benchmark datasets for cell type deconvolution are either generated from simulation or limited in scale, predominantly encompassing data on mice and are not designed for human immuno-oncology. To overcome these limitations and promote comprehensive investigation of cell type deconvolution for human immuno-oncology, we introduce a large-scale spatial transcriptomic deconvolution benchmark dataset named SpatialCTD, encompassing 1.8 million cells and 12,900 pseudo spots from the human tumor microenvironment across the lung, kidney, and liver. In addition, SpatialCTD provides more realistic reference than those generated from single-cell RNA sequencing (scRNA-seq) data for most reference-based deconvolution methods. To utilize the location-aware SpatialCTD reference, we propose a graph neural network-based deconvolution method (i.e., GNNDeconvolver). Extensive experiments show that GNNDeconvolver often outperforms existing state-of-the-art methods by a substantial margin, without requiring scRNA-seq data. To enable comprehensive evaluations of spatial transcriptomics data from flexible protocols, we provide an online tool capable of converting spatial transcriptomic data from various platforms (e.g., 10× Visium, MERFISH, and sci-Space) into pseudo spots, featuring adjustable spot size. The SpatialCTD dataset and GNNDeconvolver implementation are available at https://github.com/OmicsML/SpatialCTD, and the online converter tool can be accessed at https://omicsml.github.io/SpatialCTD/.

10.
STAR Protoc ; 5(3): 103241, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39093705

RESUMEN

Developing antibodies with high specificity against post-translationally modified epitopes remains a challenge. Yeast biopanning is well suited in screening for high-specificity binders. Here, we present a protocol for screening and validating antibodies specific to protein phosphorylation sites using a set of yeast biopanning approaches. We describe steps for screening a yeast surface display library for antibodies and other binders. We then detail procedures for validating the antibodies found by analyzing their specificity through whole-well image analysis in 96-well plates. For complete details on the use and execution of this protocol, please refer to Arbaciauskaite et al.1.

11.
World Neurosurg ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094940

RESUMEN

BACKGROUND: There is currently no established criterion for determining when interventional treatment is necessary and what strategy is appropriate for basilar artery (BA) aneurysms. Through this study, we aimed to propose an algorithm that can effectively determine the optimal endovascular treatment (EVT) option for BA aneurysms. METHODS: We enrolled patients with BA aneurysms from June 2016 to December 2022 and performed procedures based on the algorithm. The analysis included demographic, clinical, and aneurysmal characteristics, procedural details, complications, angiographic outcomes, and clinical outcomes. RESULTS: This study included 124 patients (mean age 55.0 years) with a BA aneurysm who underwent EVT. Of these, 21 aneurysms were treated in the setting of subarachnoid hemorrhage (SAH). The majority of aneurysms were located at the basilar apex (74), followed by the basilar trunk (30) and vertebrobasilar junction (20). Coiling was used in 18.5% of cases, while stent-assisted coiling embolization was chosen for 58.9%. Overlapping stents were used in 12.9%, flow diverter (FD) implantation in 3.2%, Y/T stent techniques in 4.8%, and stent adjunctive coiling with unilateral vertebral artery (VA) occlusion in only 1.6%. Procedure-related complications occurred in 15 patients (12.1%). Patients had a modified Rankin Scale(mRS) score of 0.74±1.62; 98 (86.7%) had good prognosis with mRS scores ranging from 0 to 2 at the last follow-up. DSA was performed on 105 (84.7%) patients revealing that 101 (81.5%) achieved complete or near-complete occlusion. CONCLUSIONS: The endovascular treatment criteria for BA aneurysms depended on the multi-characteristics was safe and effective. However, further evidence is needed from large cohort studies.

12.
Pathol Oncol Res ; 30: 1611773, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966280

RESUMEN

Background and Purpose: Until now, it has been difficult to accurately predict the efficacy of immunotherapy in patients with non-small cell lung cancer (NSCLC). A novel indicator, the lung immune prognostic index (LIPI), has shown relatively high prognostic value in patients with solid cancer. Therefore, this study aimed to further identify the association between LIPI and the survival of patients with NSCLC who receive immune checkpoint inhibitors (ICIs). Methods: Several electronic databases were searched for available publications up to April 23, 2023. Immunotherapy outcomes included overall survival (OS), progression-free survival (PFS), and hazard ratios (HRs) with 95% confidence intervals (CIs). Subgroup analysis based on the study design and comparison of the LIPI was conducted. Results: In this meta-analysis, 21 studies with 9,010 patients were included in this meta-analysis. The pooled results demonstrated that elevated LIPI was significantly associated with poor OS (HR = 2.50, 95% CI:2.09-2.99, p < 0.001) and PFS (HR = 1.77, 95% CI:1.64-1.91, p < 0.001). Subgroup analyses stratified by study design (retrospective vs. prospective) and comparison of LIPI (1 vs. 0, 2 vs. 0, 1-2 vs. 0, 2 vs. 1 vs. 0, 2 vs. 0-1 and 2 vs. 1) showed similar results. Conclusion: LIPI could serve as a novel and reliable prognostic factor in NSCLC treated with ICIs, and elevated LIPI predicts worse prognosis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/mortalidad , Pronóstico , Tasa de Supervivencia , Biomarcadores de Tumor
13.
Nat Mater ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977883

RESUMEN

Despite the potential of oral immunotherapy against food allergy, adverse reactions and loss of desensitization hinder its clinical uptake. Dysbiosis of the gut microbiota is implicated in the increasing prevalence of food allergy, which will need to be regulated to enable for an effective oral immunotherapy against food allergy. Here we report an inulin gel formulated with an allergen that normalizes the dysregulated ileal microbiota and metabolites in allergic mice, establishes allergen-specific oral tolerance and achieves robust oral immunotherapy efficacy with sustained unresponsiveness in food allergy models. These positive outcomes are associated with enhanced allergen uptake by antigen-sampling dendritic cells in the small intestine, suppressed pathogenic type 2 immune responses, increased interferon-γ+ and interleukin-10+ regulatory T cell populations, and restored ileal abundances of Eggerthellaceae and Enterorhabdus in allergic mice. Overall, our findings underscore the therapeutic potential of the engineered allergen gel as a suitable microbiome-modulating platform for food allergy and other allergic diseases.

14.
ACS Nano ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028863

RESUMEN

Förster resonance energy transfer (FRET)-based homogeneous immunoassay obviates tedious washing steps and thus is a promising approach for immunoassays. However, a conventional FRET-based homogeneous immunoassay operating in the visible region is not able to overcome the interference of complex biological samples, thus resulting in insufficient detection sensitivity and poor accuracy. Here, we develop a near-infrared (NIR)-to-NIR FRET platform (Ex = 808 nm, Em = 980 nm) that enables background-free high-throughput homogeneous quantification of various biomarkers in complex biological samples. This NIR-to-NIR FRET platform is portable and easy to operate and is mainly composed of a high-performance NIR-to-NIR FRET pair based on lanthanide-doped nanoparticles (LnNPs) and a custom-made microplate reader for readout of NIR luminescence signals. We demonstrate that this NIR-to-NIR FRET platform is versatile and robust, capable of realizing highly sensitive and accurate detection of various critical biomarkers, including small molecules (morphine and 1,25-dihydroxyvitamin D), proteins (human chorionic gonadotropin), and viral particles (adenovirus) in unprocessed complex biological samples (urine, whole blood, and feces) within 5-10 min. We expect this NIR-to-NIR FRET platform to provide low-cost healthcare for populations living in resource-limited areas and be widely used in many other fields, such as food safety and environmental monitoring.

16.
Environ Sci Technol ; 58(28): 12697-12707, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38956762

RESUMEN

Transforming dissolved organic matter (DOM) is a crucial approach to alleviating the formation of disinfection byproducts (DBPs) in water treatment. Although catalytic ozonation effectively transforms DOM, increases in DBP formation potential are often observed due to the accumulation of aldehydes, ketones, and nitro compound intermediates during DOM transformation. In this study, we propose a novel strategy for the sequential oxidation of DOM, effectively reducing the levels of accumulation of these intermediates. This is achieved through the development of a catalyst with a tailored surface and nanoconfined active sites for catalytic ozonation. The catalyst features a unique confinement structure, wherein Mn-N4 moieties are uniformly anchored on the catalyst surface and within nanopores (5-20 Å). This design enables the degradation of the large molecular weight fraction of DOM on the catalyst surface, while the transformed smaller molecular weight fraction enters the nanopores and undergoes rapid degradation due to the confinement effect. The generation of *Oad as the dominant reactive species is essential for effectively reducing these ozone refractory intermediates. This resulted in over 70% removal of carbonaceous and nitrogenous DBP precursors as well as brominated DBP precursors. This study highlights the importance of the nanoscale sequential reactor design and provides new insights into eliminating DBP precursors by the catalytic ozonation process.


Asunto(s)
Desinfección , Ozono , Purificación del Agua , Ozono/química , Catálisis , Purificación del Agua/métodos , Contaminantes Químicos del Agua/química
18.
Anal Lett ; 57(15): 2412-2425, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005971

RESUMEN

Invasive fungal infections are a major health threat with high morbidity and mortality, highlighting the urgent need for rapid diagnostic tools to detect antifungal resistance. Traditional culture-based antifungal susceptibility testing (AFST) methods often fall short due to their lengthy process. In our previous research, we developed a whole-slide imaging (WSI) technique for the high-throughput assessment of bacterial antibiotic resistance. Building on this foundation, this study expands the application of WSI by adapting it for rapid AFST through high-throughput monitoring of the growth of hundreds of individual fungi. Due to the distinct "budding" growth patterns of fungi, we developed a unique approach that utilizes specific cell number change to determine fungi replication, instead of cell area change used for bacteria in our previous study, to accurately determine the growth rates of individual fungal cells. This method not only accelerates the determination of antifungal resistance by directly observing individual fungal cell growth, but also yields accurate results. Employing Candida albicans as a representative model organism, reliable minimum inhibitory concentration (MIC) of fluconazole inhibiting 100% cells of Candida albicans (denoted as MIC100) was obtained within 3h using the developed method, while the modified broth dilution method required 72h for the similar reliable result. In addition, our approach was effectively utilized to test blood culture samples directly, eliminating the need to separate the fungi from whole blood samples spiked with Candida albicans. These features indicate the developed method holds great potential serving as a general tool in rapid antifungal susceptibility testing and MIC determination.

19.
Adv Sci (Weinh) ; : e2404968, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39033539

RESUMEN

The feasibility of aqueous zinc-ion batteries for large-scale energy storage is hindered by the inherent challenges of Zn anode. Drawing inspiration from cellular mechanisms governing metal ion and nutrient transport, erythritol is introduced, a zincophilic additive, into the ZnSO4 electrolyte. This innovation stabilizes the Zn anode via chelation interactions between polysaccharides and Zn2+. Experimental tests in conjunction with theoretical calculation results verified that the erythritol additive can simultaneously regulate the solvation structure of hydrated Zn2+ and reconstruct the hydrogen bond network within the solution environment. Additionally, erythritol molecules preferentially adsorb onto the Zn anode, forming a dynamic protective layer. These modifications significantly mitigate undesirable side reactions, thus enhancing the Zn2+ transport and deposition behavior. Consequently, there is a notable increase in cumulative capacity, reaching 6000 mA h cm⁻2 at a current density of 5 mA cm-2. Specifically, a high average coulombic efficiency of 99.72% and long cycling stability of >500 cycles are obtained at 2 mA cm-2 and 1 mA h cm-2. Furthermore, full batteries comprised of MnO2 cathode and Zn anode in an erythritol-containing electrolyte deliver superior capacity retention. This work provides a strategy to promote the performance of Zn anodes toward practical applications.

20.
Virology ; 597: 110142, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38959723

RESUMEN

OBJECTIVES: The specific humoral immune response resulting from inactivated vaccination following by BA.5 infection, and predictors of XBB variants re-infection in BA.5 infection-recovered nasopharyngeal carcinoma (BA.5-RNPC) patients, were explored. METHODS: Serum SARS-CoV-2 specific antibody levels were assessed using enzyme-linked-immunosorbent-assay. Univariate and multivariate binary logistic regression analyses were conducted to identify factors associated with the magnitude of specific humoral immunity and susceptibility to re-infection by XBB variants. RESULTS: Our data demonstrates that SARS-CoV-2 specific antibody levels were comparable between BA.5-RNPC patients and BA.5 infection-recovered-non-cancerous (BA.5-RNC) individuals. Specifically, serum levels of anti-ancestral-S1-IgG, anti-ancestral-nucleocapsid-protein (NP)-IgG, anti-BA.5-receptor binding domain (RBD)-IgG and anti-XBB.1.1.6-RBD-IgG were higher in BA.5-RNPC patients compared to those without a prior infection. Compared to BA.5-RNPC patients without vaccination, individuals who received inactivated vaccination exhibited significantly higher levels of anti-ancestral-S1-IgG and anti-XBB.1.16-RBD-IgG. Multivariate logistic regression analysis revealed that inactivated vaccination was the most significant predictor of all tested SARS-CoV-2 specific antibodies response. Subsequent analysis indicated that a low globulin level is an independent risk factor for XBB re-infection in BA.5-RNPC patients. CONCLUSIONS: The SARS-CoV-2 specific antibodies have been improved in vaccinated BA.5-RNPC patients. However, the baseline immunity status biomarker IgG is an indicators of XBB variant re-infection risk in BA.5-RNPC patients.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , Inmunoglobulina G , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Reinfección , SARS-CoV-2 , Humanos , Masculino , Femenino , Anticuerpos Antivirales/sangre , COVID-19/inmunología , COVID-19/virología , Persona de Mediana Edad , Carcinoma Nasofaríngeo/inmunología , Carcinoma Nasofaríngeo/virología , Carcinoma Nasofaríngeo/genética , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Factores de Riesgo , Neoplasias Nasofaríngeas/inmunología , Neoplasias Nasofaríngeas/virología , Reinfección/inmunología , Reinfección/virología , Adulto , Inmunoglobulina G/sangre , Anciano , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Inmunidad Humoral , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA