Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
medRxiv ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38978683

RESUMEN

We investigated the risks of post-acute and chronic adverse kidney outcomes of SARS-CoV-2 infection in the pediatric population via a retrospective cohort study using data from the RECOVER program. We included 1,864,637 children and adolescents under 21 from 19 children's hospitals and health institutions in the US with at least six months of follow-up time between March 2020 and May 2023. We divided the patients into three strata: patients with pre-existing chronic kidney disease (CKD), patients with acute kidney injury (AKI) during the acute phase (within 28 days) of SARS-CoV-2 infection, and patients without pre-existing CKD or AKI. We defined a set of adverse kidney outcomes for each stratum and examined the outcomes within the post-acute and chronic phases after SARS-CoV-2 infection. In each stratum, compared with the non-infected group, patients with COVID-19 had a higher risk of adverse kidney outcomes. For patients without pre-existing CKD, there were increased risks of CKD stage 2+ (HR 1.20; 95% CI: 1.13-1.28) and CKD stage 3+ (HR 1.35; 95% CI: 1.15-1.59) during the post-acute phase (28 days to 365 days) after SARS-CoV-2 infection. Within the post-acute phase of SARS-CoV-2 infection, children and adolescents with pre-existing CKD and those who experienced AKI were at increased risk of progression to a composite outcome defined by at least 50% decline in estimated glomerular filtration rate (eGFR), eGFR <15 mL/min/1.73m2, End Stage Kidney Disease diagnosis, dialysis, or transplant.

2.
medRxiv ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38826331

RESUMEN

Importance: The profile of gastrointestinal (GI) outcomes that may affect children in post-acute and chronic phases of COVID-19 remains unclear. Objective: To investigate the risks of GI symptoms and disorders during the post-acute phase (28 days to 179 days after SARS-CoV-2 infection) and the chronic phase (180 days to 729 days after SARS-CoV-2 infection) in the pediatric population. Design: We used a retrospective cohort design from March 2020 to Sept 2023. Setting: twenty-nine healthcare institutions. Participants: A total of 413,455 patients aged not above 18 with SARS-CoV-2 infection and 1,163,478 patients without SARS-CoV-2 infection. Exposures: Documented SARS-CoV-2 infection, including positive polymerase chain reaction (PCR), serology, or antigen tests for SARS-CoV-2, or diagnoses of COVID-19 and COVID-related conditions. Main Outcomes and Measures: Prespecified GI symptoms and disorders during two intervals: post-acute phase and chronic phase following the documented SARS-CoV-2 infection. The adjusted risk ratio (aRR) was determined using a stratified Poisson regression model, with strata computed based on the propensity score. Results: Our cohort comprised 1,576,933 patients, with females representing 48.0% of the sample. The analysis revealed that children with SARS-CoV-2 infection had an increased risk of developing at least one GI symptom or disorder in both the post-acute (8.64% vs. 6.85%; aRR 1.25, 95% CI 1.24-1.27) and chronic phases (12.60% vs. 9.47%; aRR 1.28, 95% CI 1.26-1.30) compared to uninfected peers. Specifically, the risk of abdominal pain was higher in COVID-19 positive patients during the post-acute phase (2.54% vs. 2.06%; aRR 1.14, 95% CI 1.11-1.17) and chronic phase (4.57% vs. 3.40%; aRR 1.24, 95% CI 1.22-1.27). Conclusions and Relevance: In the post-acute phase or chronic phase of COVID-19, the risk of GI symptoms and disorders was increased for COVID-positive patients in the pediatric population.

3.
J Exp Clin Cancer Res ; 43(1): 154, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822363

RESUMEN

BACKGROUND: RNA modifications of transfer RNAs (tRNAs) are critical for tRNA function. Growing evidence has revealed that tRNA modifications are related to various disease processes, including malignant tumors. However, the biological functions of methyltransferase-like 1 (METTL1)-regulated m7G tRNA modifications in breast cancer (BC) remain largely obscure. METHODS: The biological role of METTL1 in BC progression were examined by cellular loss- and gain-of-function tests and xenograft models both in vitro and in vivo. To investigate the change of m7G tRNA modification and mRNA translation efficiency in BC, m7G-methylated tRNA immunoprecipitation sequencing (m7G tRNA MeRIP-seq), Ribosome profiling sequencing (Ribo-seq), and polysome-associated mRNA sequencing were performed. Rescue assays were conducted to decipher the underlying molecular mechanisms. RESULTS: The tRNA m7G methyltransferase complex components METTL1 and WD repeat domain 4 (WDR4) were down-regulated in BC tissues at both the mRNA and protein levels. Functionally, METTL1 inhibited BC cell proliferation, and cell cycle progression, relying on its enzymatic activity. Mechanistically, METTL1 increased m7G levels of 19 tRNAs to modulate the translation of growth arrest and DNA damage 45 alpha (GADD45A) and retinoblastoma protein 1 (RB1) in a codon-dependent manner associated with m7G. Furthermore, in vivo experiments showed that overexpression of METTL1 enhanced the anti-tumor effectiveness of abemaciclib, a cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitor. CONCLUSION: Our study uncovered the crucial tumor-suppressive role of METTL1-mediated tRNA m7G modification in BC by promoting the translation of GADD45A and RB1 mRNAs, selectively blocking the G2/M phase of the cell cycle. These findings also provided a promising strategy for improving the therapeutic benefits of CDK4/6 inhibitors in the treatment of BC patients.


Asunto(s)
Neoplasias de la Mama , Metiltransferasas , ARN de Transferencia , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Ratones , Animales , Metiltransferasas/metabolismo , Metiltransferasas/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Metilación , Línea Celular Tumoral , Proliferación Celular , Carcinogénesis/genética , Puntos de Control del Ciclo Celular , Biosíntesis de Proteínas , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos
4.
Int J Biol Macromol ; 271(Pt 1): 132434, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38788879

RESUMEN

The aim of this study was to improve the inhibitory resistance of xylanase FgXyn11C from Fusarium graminearum to XIP in cereal flour. Site saturation mutagenesis was performed using computer-aided redesign. Firstly, based on multiple primary structure alignments, the amino acid residues in the active site architecture were identified, and specific residue T144 in the thumb region of FgXyn11C was selected for site-saturation mutagenesis. After screening, FgXyn11CT144F was selected as the best mutant, as it displayed the highest enzymatic activity and resistance simultaneously compared to other mutants. The specific activity of FgXyn11CT144F was 208.8 U/mg and it exhibited complete resistance to SyXIP-I. Compared with the wild-type, FgXyn11CT144F displayed similar activity and the most resistant against SyXIP-I. The optimal temperature and pH of the wild-type and purified FgXyn11CT144F were similar at pH 5.0 and 30 °C. Our findings provided preliminary insight into how the specific residue at position 144 in the thumb region of FgXyn11C influenced the enzymatic properties and interacted with SyXIP-I. The inhibition sensitivity of FgXyn11C was reduced through directed evolution, leading to creation of the mutant enzyme FgXyn11CT144F. The FgXyn11CT144F resistance to SyXIP-I has potential application and can also provide references for engineering other resistant xylanases of the GHF11.


Asunto(s)
Endo-1,4-beta Xilanasas , Fusarium , Mutagénesis Sitio-Dirigida , Fusarium/enzimología , Fusarium/efectos de los fármacos , Fusarium/genética , Endo-1,4-beta Xilanasas/genética , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/metabolismo , Endo-1,4-beta Xilanasas/antagonistas & inhibidores , Dominio Catalítico , Modelos Moleculares , Concentración de Iones de Hidrógeno , Secuencia de Aminoácidos , Temperatura
5.
medRxiv ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38798448

RESUMEN

Background: The risk of cardiovascular outcomes in the post-acute phase of SARS-CoV-2 infection has been quantified among adults and children. This paper aimed to assess a multitude of cardiac signs, symptoms, and conditions, as well as focused on patients with and without congenital heart defects (CHDs), to provide a more comprehensive assessment of the post-acute cardiovascular outcomes among children and adolescents after COVID-19. Methods: This retrospective cohort study used data from the RECOVER consortium comprising 19 US children's hospitals and health institutions between March 2020 and September 2023. Every participant had at least a six-month follow-up after cohort entry. Absolute risks of incident post-acute COVID-19 sequelae were reported. Relative risks (RRs) were calculated by contrasting COVID-19-positive with COVID-19-negative groups using a Poisson regression model, adjusting for demographic, clinical, and healthcare utilization factors through propensity scoring stratification. Results: A total of 1,213,322 individuals under 21 years old (mean[SD] age, 7.75[6.11] years; 623,806 male [51.4%]) were included. The absolute rate of any post-acute cardiovascular outcome in this study was 2.32% in COVID-19 positive and 1.38% in negative groups. Patients with CHD post-SARS-CoV-2 infection showed increased risks of any cardiovascular outcome (RR, 1.63; 95% confidence interval (CI), 1.47-1.80), including increased risks of 11 of 18 post-acute sequelae in hypertension, arrhythmias (atrial fibrillation and ventricular arrhythmias), myocarditis, other cardiac disorders (heart failure, cardiomyopathy, and cardiac arrest), thrombotic disorders (thrombophlebitis and thromboembolism), and cardiovascular-related symptoms (chest pain and palpitations). Those without CHDs also experienced heightened cardiovascular risks after SARS-CoV-2 infection (RR, 1.63; 95% CI, 1.57-1.69), covering 14 of 18 conditions in hypertension, arrhythmias (ventricular arrhythmias and premature atrial or ventricular contractions), inflammatory heart disease (pericarditis and myocarditis), other cardiac disorders (heart failure, cardiomyopathy, cardiac arrest, and cardiogenic shock), thrombotic disorders (pulmonary embolism and thromboembolism), and cardiovascular-related symptoms (chest pain, palpitations, and syncope). Conclusions: Both children with and without CHDs showed increased risks for a variety of cardiovascular outcomes after SARS-CoV-2 infection, underscoring the need for targeted monitoring and management in the post-acute phase.

6.
Sci Total Environ ; 928: 172494, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38631642

RESUMEN

Environmental factors significantly impact grain mycobiome assembly and mycotoxin contamination. However, there is still a lack of understanding regarding the wheat mycobiome and the role of fungal communities in the interaction between environmental factors and mycotoxins. In this study, we collected wheat grain samples from 12 major wheat-producing provinces in China during both the harvest and storage periods. Our aim was to evaluate the mycobiomes in wheat samples with varying deoxynivalenol (DON) contamination levels and to confirm the correlation between environmental factors, the wheat mycobiome, and mycotoxins. The results revealed significant differences in the wheat mycobiome and co-occurrence network between contaminated and uncontaminated wheat samples. Fusarium was identified as the main differential taxon responsible for inducing DON contamination in wheat. Correlation analysis identified key factors affecting mycotoxin contamination. The results indicate that both environmental factors and the wheat mycobiome play significant roles in the production and accumulation of DON. Environmental factors can affect the wheat mycobiome assembly, and wheat mycobiome mediates the interaction between environmental factors and mycotoxin contamination. Furthermore, a random forest (RF) model was developed using key biological indicators and environmental features to predict DON contamination in wheat with accuracies exceeding 90 %. The findings provide data support for the accurate prediction of mycotoxin contamination and lay the foundation for the research on biological control technologies of mycotoxin through the assembly of synthetic microbial communities.


Asunto(s)
Micobioma , Micotoxinas , Triticum , Triticum/microbiología , Micotoxinas/análisis , Micotoxinas/metabolismo , China , Grano Comestible/microbiología , Contaminación de Alimentos/análisis , Tricotecenos/análisis , Tricotecenos/metabolismo , Fusarium , Monitoreo del Ambiente
7.
BMC Microbiol ; 24(1): 98, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528458

RESUMEN

OBJECTIVE: The association between heart failure (HF) and intestinal inflammation caused by a disturbed intestinal microbiota in infants with congenital heart disease (CHD) was investigated. METHODS: Twenty infants with HF and CHD who were admitted to our hospital between October 2021 and March 2022 were included in this study. Twenty age- and sex-matched infants without HF at our hospital were selected as the control group. Faecal samples were obtained from each participant and analysed by enzyme-linked immunoassay and 16 S rDNA sequencing to assess intestinal inflammatory factors and the microbiota. RESULTS: The levels of intestinal inflammatory factors, including IL-1ß, IL-4, IL-6, IL-17 A and TNF-α, were greatly increased, while the levels of IL-10 were significantly decreased in the HF group compared to the control group (p < 0.05). The intestinal microbial diversity of patients in the HF group was markedly lower than that in the control group (p < 0.05). The abundance of Enterococcus was significantly increased in the HF group compared to the control group (p < 0.05), but the abundance of Bifidobacterium was significantly decreased in the HF group compared to the control group (p < 0.05). The diversity of the intestinal microbiota was negatively correlated with the levels of IL-1ß, IL-4, IL-6 and TNF-α in the intestinal tract but was positively correlated with that of IL-10. The abundance of Enterococcus was positively associated with the levels of IL-1ß, IL-4, IL-6 and TNF-α in the intestinal tract but was negatively correlated with that of IL-10. NT-proBNP was positively associated with the levels of IL-1ß, IL-4, IL-6 and TNF-α in the HF group but was negatively correlated with that of IL-10. The heart function score was positively associated with the levels of IL-1ß, IL-4, IL-6 and TNF-α in the HF group but was negatively correlated with that of IL-10. CONCLUSIONS: Infants with CHD-related HF had a disordered intestinal microbiota, decreased diversity of intestinal microbes, increased levels of pathogenic bacteria and decreased levels of beneficial bacteria. The increased abundance of Enterococcus and the significant decrease in the diversity of the intestinal microbiota may exacerbate the intestinal inflammatory response, which may be associated with the progression of HF.


Asunto(s)
Cardiopatías Congénitas , Insuficiencia Cardíaca , Lactante , Humanos , Interleucina-10 , Factor de Necrosis Tumoral alfa , Interleucina-6 , Interleucina-4 , Insuficiencia Cardíaca/complicaciones , Cardiopatías Congénitas/complicaciones , Enterococcus/genética , Inflamación
8.
Adv Mater ; 36(25): e2401346, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38416605

RESUMEN

Fluorescent organic nanoparticles (NPs) with exceptional brightness hold significant promise for demanding fluorescence bioimaging applications. Although considerable efforts are invested in developing novel organic dyes with enhanced performance, augmenting the brightness of conventional fluorophores is still one of the biggest challenges to overcome. This study presents a supramolecular strategy for constructing ultrabright fluorescent nanoparticles in aqueous media (referred to as "Supra-fluorophores") derived from conventional fluorophores. To achieve this, this course has employed a cylindrical nanoparticle with a hydrophobic microdomain, assembled by a cyclic peptide-diblock copolymer conjugate in water, as a supramolecular scaffold. The noncovalent dispersion of fluorophore moieties within the hydrophobic microdomain of the scaffold effectively mitigates the undesired aggregation-caused quenching and fluorescence quenching by water, resulting in fluorescent NPs with high brightness. This strategy is applicable to a broad spectrum of fluorophore families, covering polyaromatic hydrocarbons, coumarins, boron-dipyrromethenes, cyanines, xanthenes, and squaraines. The resulting fluorescent NPs demonstrate high fluorescence quantum yield (>30%) and brightness per volume (as high as 12 060 m-1 cm-1 nm-3). Moreover, high-performance NPs with emission in the NIR region are constructed, showcasing up to 20-fold increase in both brightness and photostability. This Supra-fluorophore strategy offers a versatile and effective method for transforming existing fluorophores into ultrabright fluorescent NPs in aqueous environments, for applications such as bioimaging.

9.
Ecotoxicol Environ Saf ; 270: 115907, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38176185

RESUMEN

Fluoride has strong electronegativity and exposes diversely in nature. Water fluoridation is the most pervasive form of occurrence, representing a significant threat to human health. In this study, we investigate the morphometric and physiological alterations triggered by fluoride stimulation during the embryogenesis of zebrafish and reveal its putative effects of stage- and/or dose-dependent. Fluoride exhibits potent biological activity and can be extensively absorbed by the yolk sac, exerting significant effects on the development of multiple organs. This is primarily manifested as restricted nutrient utilization and elevated levels of lipid peroxidation, further leading to the accumulation of superoxide in the yolk sac, liver, and intestines. Moreover, pericardial edema exerts pressure on the brain and eye development, resulting in spinal curvature and reduced body length. Besides, acute fluoride exposure with varying concentrations has led to diverse teratogenic outcomes. A low dose of water fluoridation tends to induce abnormal development of the embryonic yolk sac, while vascular malformation is widely observed in all fluoride-treated groups. The effect of fluoride exposure on blood circulation is universally present, even in zebrafish larvae that do not exhibit obvious deformities. Their swimming behavior is also affected by water fluoridation, resulting in reduced activity and delayed reactions. In conclusion, this study provides valuable insights into the monitoring of environmental quality related to water fluoridation and disease prevention.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Humanos , Fluoruros/toxicidad , Fluoruración , Desarrollo Embrionario , Saco Vitelino , Embrión no Mamífero , Contaminantes Químicos del Agua/toxicidad
10.
Ann Intern Med ; 177(2): 165-176, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38190711

RESUMEN

BACKGROUND: The efficacy of the BNT162b2 vaccine in pediatrics was assessed by randomized trials before the Omicron variant's emergence. The long-term durability of vaccine protection in this population during the Omicron period remains limited. OBJECTIVE: To assess the effectiveness of BNT162b2 in preventing infection and severe diseases with various strains of the SARS-CoV-2 virus in previously uninfected children and adolescents. DESIGN: Comparative effectiveness research accounting for underreported vaccination in 3 study cohorts: adolescents (12 to 20 years) during the Delta phase and children (5 to 11 years) and adolescents (12 to 20 years) during the Omicron phase. SETTING: A national collaboration of pediatric health systems (PEDSnet). PARTICIPANTS: 77 392 adolescents (45 007 vaccinated) during the Delta phase and 111 539 children (50 398 vaccinated) and 56 080 adolescents (21 180 vaccinated) during the Omicron phase. INTERVENTION: First dose of the BNT162b2 vaccine versus no receipt of COVID-19 vaccine. MEASUREMENTS: Outcomes of interest include documented infection, COVID-19 illness severity, admission to an intensive care unit (ICU), and cardiac complications. The effectiveness was reported as (1-relative risk)*100, with confounders balanced via propensity score stratification. RESULTS: During the Delta period, the estimated effectiveness of the BNT162b2 vaccine was 98.4% (95% CI, 98.1% to 98.7%) against documented infection among adolescents, with no statistically significant waning after receipt of the first dose. An analysis of cardiac complications did not suggest a statistically significant difference between vaccinated and unvaccinated groups. During the Omicron period, the effectiveness against documented infection among children was estimated to be 74.3% (CI, 72.2% to 76.2%). Higher levels of effectiveness were seen against moderate or severe COVID-19 (75.5% [CI, 69.0% to 81.0%]) and ICU admission with COVID-19 (84.9% [CI, 64.8% to 93.5%]). Among adolescents, the effectiveness against documented Omicron infection was 85.5% (CI, 83.8% to 87.1%), with 84.8% (CI, 77.3% to 89.9%) against moderate or severe COVID-19, and 91.5% (CI, 69.5% to 97.6%) against ICU admission with COVID-19. The effectiveness of the BNT162b2 vaccine against the Omicron variant declined 4 months after the first dose and then stabilized. The analysis showed a lower risk for cardiac complications in the vaccinated group during the Omicron variant period. LIMITATION: Observational study design and potentially undocumented infection. CONCLUSION: This study suggests that BNT162b2 was effective for various COVID-19-related outcomes in children and adolescents during the Delta and Omicron periods, and there is some evidence of waning effectiveness over time. PRIMARY FUNDING SOURCE: National Institutes of Health.


Asunto(s)
Vacuna BNT162 , COVID-19 , Estados Unidos , Humanos , Adolescente , Niño , Vacunas contra la COVID-19 , COVID-19/prevención & control , Investigación sobre la Eficacia Comparativa , Hospitalización
11.
Anal Biochem ; 686: 115413, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38040174

RESUMEN

To establish an in vitro biological activity detection method for luteinizing hormone (LH), the hLHCGR-CREB-HEK293 cell line was constructed to stably express human luteinizing hormone/chorionic gonadotropin receptor (hLHCGR). After optimization, the rhLH starting working concentration was 800 mIU/mL with 4-fold serial dilutions, 10 concentrations and an incubation time of 5 h. The method was confirmed to be highly specific, with good accuracy, precision and linearity, meeting the needs of process research and release testing, and can be used as a routine detection method for LH biological activity. With the increasing demand for research and development of rhLH biologically similar drugs, establishing a stable and simple activity assay method to evaluate the biological activity of rhLH can provide technical support for quality control of rhLH products and powerful tools for comparability research of similar products.


Asunto(s)
Gonadotropina Coriónica , Hormona Luteinizante , Humanos , Genes Reporteros , Células HEK293 , Hormona Luteinizante/genética , Preparaciones Farmacéuticas , Proteínas Recombinantes , Bioensayo
12.
J Mater Chem B ; 11(45): 10908-10922, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37934118

RESUMEN

Structural degeneration of a hybrid layer composed of a demineralized dentin matrix (DDM) and adhesive causes unsatisfactory functional outcomes in terms of bonding repair and caries treatment and is accompanied by high prevalence of secondary caries. Clinically, defects in the hybrid layer from insufficient adhesive infiltration, bacterial load from retained infected-dentin, and bacterial attack from the oral cavity are the main threats to degeneration. Currently, there is no strategy to simultaneously address adhesive penetration and bacterial infection. Herein, based on the core role of the strongly-polar hydrated DDM interface in dentin bonding, an interface-reconstructed bonding strategy assisted by electrostatic assembly of broad-spectrum germicidal polyhexamethylene biguanide (PHMB) is proposed that kills two birds with one stone. PHMB is absorbed onto the anionic 3D DDM forming a PHMB/DDM complex. The surface potential of the DDM increases by about 100 mV, the anion content decreases by 20%, and the interface water content decreases by nearly 40%. All of these changes contribute to the penetration of the adhesive, thereby improving the bonding strength and durability. After thermal cycling aging, the bonding strength of the PHMB group was 1.45-1.65 times that of the control group. In terms of antibacterial properties, PHMB treatment not only has a bacterial-killing ability due to the already formed biofilm but also significantly reduces the adhesion of bacteria, thereby delaying the occurrence of secondary caries. In summary, PHMB treatment reconstructed the DDM interface, resulting in a defect-low and inherent antibacterial hybrid layer that improves the bonding effect, treatment of caries and even prevention of secondary caries.


Asunto(s)
Susceptibilidad a Caries Dentarias , Recubrimientos Dentinarios , Recubrimientos Dentinarios/química , Dentina , Antibacterianos/farmacología , Antibacterianos/análisis
13.
J Mater Chem B ; 11(47): 11394, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38013466

RESUMEN

Correction for 'A polyhexamethylene biguanide-assembly assisted strategy of dentin bonding greatly promotes bonding effects and caries treatment' by Chang Shu et al., J. Mater. Chem. B, 2023, 11, 10908-10922, https://doi.org/10.1039/D3TB02083E.

14.
medRxiv ; 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38014095

RESUMEN

Background: The efficacy of the BNT162b2 vaccine in pediatrics was assessed by randomized trials before the Omicron variant's emergence. The long-term durability of vaccine protection in this population during the Omicron period remains limited. Objective: To assess the effectiveness of BNT162b2 in preventing infection and severe diseases with various strains of the SARS-CoV-2 virus in previously uninfected children and adolescents. Design: Comparative effectiveness research accounting for underreported vaccination in three study cohorts: adolescents (12 to 20 years) during the Delta phase, children (5 to 11 years) and adolescents (12 to 20 years) during the Omicron phase. Setting: A national collaboration of pediatric health systems (PEDSnet). Participants: 77,392 adolescents (45,007 vaccinated) in the Delta phase, 111,539 children (50,398 vaccinated) and 56,080 adolescents (21,180 vaccinated) in the Omicron period. Exposures: First dose of the BNT162b2 vaccine vs. no receipt of COVID-19 vaccine. Measurements: Outcomes of interest include documented infection, COVID-19 illness severity, admission to an intensive care unit (ICU), and cardiac complications. The effectiveness was reported as (1-relative risk)*100% with confounders balanced via propensity score stratification. Results: During the Delta period, the estimated effectiveness of BNT162b2 vaccine was 98.4% (95% CI, 98.1 to 98.7) against documented infection among adolescents, with no significant waning after receipt of the first dose. An analysis of cardiac complications did not find an increased risk after vaccination. During the Omicron period, the effectiveness against documented infection among children was estimated to be 74.3% (95% CI, 72.2 to 76.2). Higher levels of effectiveness were observed against moderate or severe COVID-19 (75.5%, 95% CI, 69.0 to 81.0) and ICU admission with COVID-19 (84.9%, 95% CI, 64.8 to 93.5). Among adolescents, the effectiveness against documented Omicron infection was 85.5% (95% CI, 83.8 to 87.1), with 84.8% (95% CI, 77.3 to 89.9) against moderate or severe COVID-19, and 91.5% (95% CI, 69.5 to 97.6)) against ICU admission with COVID-19. The effectiveness of the BNT162b2 vaccine against the Omicron variant declined after 4 months following the first dose and then stabilized. The analysis revealed a lower risk of cardiac complications in the vaccinated group during the Omicron variant period. Limitations: Observational study design and potentially undocumented infection. Conclusions: Our study suggests that BNT162b2 was effective for various COVID-19-related outcomes in children and adolescents during the Delta and Omicron periods, and there is some evidence of waning effectiveness over time. Primary Funding Source: National Institutes of Health.

15.
Int J Biol Macromol ; 253(Pt 5): 127190, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37802452

RESUMEN

Bacterial biofilm formation and drug resistance are common issues associated with wound healing. Antimicrobial peptides (AMPs) are a new class of antimicrobial agents with the potential to solve these global health issues. New injectable adhesive antibacterial hydrogels have excellent prospects of becoming the next innovative wound-healing dressings. In this study, the hyaluronic acid was connected to the antibacterial peptide Plantaricin 149 (Pln149), obtaining HAD@AMP. HAD@AMP performed well in efficient antimicrobial activity, good histocompatibility, low drug resistance, low bacterial biofilm formation, and fast wound healing process which are essential for rapid healing of infected wound. During the hydrogel degradation process, Pln149 was released to inhibit bacterial communication and reduce bacterial biofilm formation. Meanwhile, HAD@AMP could up-regulate anti-inflammatory and pro-angiogenic factors, and down-regulate inflammatory factors to promote the healing of infected wounds, which provide a new idea for skin healing strategies.


Asunto(s)
Ácido Hialurónico , Infección de Heridas , Humanos , Ácido Hialurónico/farmacología , Antibacterianos , Antiinflamatorios/farmacología , Biopelículas , Hidrogeles/farmacología , Cicatrización de Heridas , Infección de Heridas/tratamiento farmacológico
16.
Nat Commun ; 14(1): 3725, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349354

RESUMEN

Sphingolipids are ubiquitous components of membranes and function as bioactive lipid signaling molecules. Here, through genetic screening and lipidomics analyses, we find that the endoplasmic reticulum (ER) calcium channel Csg2 integrates sphingolipid metabolism with autophagy by regulating ER calcium homeostasis in the yeast Saccharomyces cerevisiae. Csg2 functions as a calcium release channel and maintains calcium homeostasis in the ER, which enables normal functioning of the essential sphingolipid synthase Aur1. Under starvation conditions, deletion of Csg2 causes increases in calcium levels in the ER and then disturbs Aur1 stability, leading to accumulation of the bioactive sphingolipid phytosphingosine, which specifically and completely blocks autophagy and induces loss of starvation resistance in cells. Our findings indicate that calcium homeostasis in the ER mediated by the channel Csg2 translates sphingolipid metabolism into autophagy regulation, further supporting the role of the ER as a signaling hub for calcium homeostasis, sphingolipid metabolism and autophagy.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Autofagia , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Esfingolípidos/metabolismo
17.
Sci Rep ; 13(1): 7134, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37130848

RESUMEN

Congenital heart disease (CHD) is the most common type of birth defect and the main noninfectious cause of death during the neonatal stage. The non-POU domain containing, octamer-binding gene, NONO, performs a variety of roles involved in DNA repair, RNA synthesis, transcriptional and post-transcriptional regulation. Currently, hemizygous loss-of-function mutation of NONO have been described as the genetic origin of CHD. However, essential effects of NONO during cardiac development have not been fully elucidated. In this study, we aim to understand role of Nono in cardiomyocytes during development by utilizing the CRISPR/Cas9 gene editing system to deplete Nono in the rat cardiomyocytes H9c2. Functional comparison of H9c2 control and knockout cells showed that Nono deficiency suppressed cell proliferation and adhesion. Furthermore, Nono depletion significantly affected the mitochondrial oxidative phosphorylation (OXPHOS) and glycolysis, resulting in H9c2 overall metabolic deficits. Mechanistically we demonstrated that the Nono knockout impeded the cardiomyocyte function by attenuating phosphatidyl inositol 3 kinase-serine/threonine kinase (Pi3k/Akt) signaling via the assay for transposase-accessible chromatin using sequencing in combination with RNA sequencing. From these results we propose a novel molecular mechanism of Nono to influence cardiomyocytes differentiation and proliferation during the development of embryonic heart. We conclude that NONO may represent an emerging possible biomarkers and targets for the diagnosis and treatment of human cardiac development defects.


Asunto(s)
Proteínas de Unión al ADN , Cardiopatías Congénitas , Miocitos Cardíacos , Proteínas de Unión al ARN , Animales , Humanos , Ratas , Proliferación Celular/genética , Proteínas de Unión al ADN/genética , Miocitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo
18.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(6): 691-695, 2023 Jun 10.
Artículo en Chino | MEDLINE | ID: mdl-37212004

RESUMEN

OBJECTIVE: To explore the genetic basis for a child with congenital heart disease (CHD) and global developmental delay (GDD). METHODS: A child who was hospitalized at the Department of Cardiac Surgery of Fujian Children's Hospital on April 27, 2022 was selected as the study subject. Clinical data of the child was collected. Umbilical cord blood sample of the child and peripheral blood samples of his parents were collected and subjected to whole exome sequencing (WES). Candidate variant was verified by Sanger sequencing and bioinformatic analysis. RESULTS: The child, a 3-year-and-3-month-old boy, had manifested cardiac abnormalities and developmental delay. WES revealed that he had harbored a nonsense variant of c.457C>T (p.Arg153*) in the NONO gene. Sanger sequencing showed that neither of his parents has carried the same variant. The variant has been recorded by the OMIM, ClinVar and HGMD databases, but not in the normal population databases of 1000 Genomes, dbSNP and gnomAD. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), it was rated as a pathogenic variant. CONCLUSION: The c.457C>T (p.Arg153*) variant of the NONO gene probably underlay the CHD and GDD in this child. Above finding has expanded the phenotypic spectrum of the NONO gene and provided a reference for the clinical diagnosis and genetic counseling for this family.


Asunto(s)
Discapacidades del Desarrollo , Cardiopatías Congénitas , Humanos , Masculino , Biología Computacional , Proteínas de Unión al ADN , Asesoramiento Genético , Genómica , Cardiopatías Congénitas/genética , Mutación , Padres , Proteínas de Unión al ARN , Preescolar , Discapacidades del Desarrollo/genética
19.
Antioxidants (Basel) ; 12(4)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37107210

RESUMEN

Natural products have been used extensively around the world for many years as therapeutic, prophylactic, and health-promotive agents. Ribes himalense Royle ex Decne, a plant used in traditional Tibetan medicine, has been demonstrated to have significant antioxidant and anti-inflammatory properties. However, the material basis of its medicinal effects has not been sufficiently explored. In this study, we established an integrated strategy by online HPLC-1,1-diphenyl-2-picrylhydrazyl, medium-pressure liquid chromatography, and HPLC to achieve online detection and separation of antioxidants in Ribes himalense extracts. Finally, four antioxidants with quercetin as the parent nucleus were obtained, namely, Quercetin-3-O-ß-D-glucopyranoside-7-O-α-L-rhamnopyranoside, Quercetin-3-O-ß-D-xylopyranosyl(1-2)-ß-D-glucopyranoside, Quercetin-3-O-ß-D-glucopyranoside, and Quercetin-3-O-ß-D-galactoside. Until now, the four antioxidants in Ribes himalense have not been reported in other literatures. Meanwhile, the free-radical-scavenging ability of them was evaluated by DPPH assay, and potential antioxidant target proteins were explored using molecular docking. In conclusion, this research provides insights into the active compounds in Ribes himalense which will facilitate the advancement of deeper studies on it. Moreover, such an integrated chromatographic strategy could be a strong driver for more efficient and scientific use of other natural products in the food and pharmaceutical industries.

20.
Front Cell Infect Microbiol ; 13: 1152349, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968106

RESUMEN

Purpose: There is a close relationship between the intestinal microbiota and heart failure, but no study has assessed this relationship in infants with congenital heart disease. This study aimed to explore the relationship between heart failure and intestinal microbiota in infants with congenital heart disease. Methods: Twenty-eight infants with congenital heart disease with heart failure admitted to a provincial children's hospital from September 2021 to December 2021 were enrolled in this study. A total of 22 infants without heart disease and matched for age, sex, and weight were selected as controls. Faecal samples were collected from every participant and subjected to 16S rDNA gene sequencing. Results: The composition of the intestinal microbiota was significantly disordered in infants with heart failure caused by congenital heart disease compared with that in infants without heart disease. At the phylum level, the most abundant bacteria in the heart failure group were Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes, and the most abundant bacteria in the control group were Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes. At the genus level, the most abundant bacteria in the heart failure group were Enterococcus, Bifidobacterium, Subdoligranulum, Shigella, and Streptococcus, and the most abundant bacteria in the control group were Bifidobacterium, Blautia, Bacteroides, Streptococcus, and Ruminococcus. The alpha and beta diversities of the gut bacterial community in the heart failure group were significantly lower than those in the control group (p<0.05). Compared with the control group, retinol metabolism was significantly downregulated in the heart failure group. Conclusion: Heart failure in infants with congenital heart disease caused intestinal microbiota disorder, which was characterised by an increase in pathogenic bacteria, a decrease in beneficial bacteria, and decreases in diversity and richness. The significant downregulation of retinol metabolism in the intestinal microbiota of infants with heart failure may be related to the progression of heart failure, and further study of the underlying mechanism is needed.


Asunto(s)
Microbioma Gastrointestinal , Cardiopatías Congénitas , Insuficiencia Cardíaca , Niño , Humanos , Lactante , Vitamina A , Bacterias/genética , Heces/microbiología , Cardiopatías Congénitas/complicaciones , Insuficiencia Cardíaca/complicaciones , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA