Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nanomaterials (Basel) ; 14(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38727381

RESUMEN

Broad-area lasers (BALs) have found applications in a variety of crucial fields on account of their high output power and high energy transfer efficiency. However, they suffer from poor spatial beam quality due to multi-mode behavior along the waveguide transverse direction. In this paper, we propose a novel metasurface waveguide structure acting as a transverse mode selective back-reflector for BALs. In order to effectively inverse design such a structure, a digital adjoint algorithm is introduced to adapt the considerably large design area and the high degree of freedom. As a proof of the concept, a device structure with a design area of 40 × 20 µm2 is investigated. The simulation results exhibit high fundamental mode reflection (above 90%), while higher-order transverse mode reflections are suppressed below 0.2%. This is, to our knowledge, the largest device structure designed based on the inverse method. We exploited such a device and the method and further investigated the device's robustness and feasibility of the inverse method. The results are elaborately discussed.

2.
J Environ Manage ; 360: 121062, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38735068

RESUMEN

High value-added products from organic waste fermentation have garnered increasing concern in modern society. VFAs are short-chain fatty acids, produced as intermediate products during the anaerobic fermentation of organic matter. VFAs can serve as an essential organic carbon source to produce substitutable fuels, microbial fats and oils, and synthetic biodegradable plastics et al. Extracting VFAs from the fermentation broths is a challenging task as the composition of suspensions is rather complex. In this paper, a comprehensive review of methods for VFAs production, extraction and separation are provided. Firstly, the methods to enhance VFAs production and significant operating parameters are briefly reviewed. Secondly, the evaluation and detailed discussion of various VFAs extraction and separation technologies, including membrane separation, complex extraction, and adsorption methods, are presented, highlighting their specific advantages and limitations. Finally, the challenges encountered by different separation technologies and novel approaches to enhance process performance are highlighted, providing theoretical guidance for recycling VFAs from organic wastes efficiently.

3.
Plant Cell Environ ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38736429

RESUMEN

Day length modulates hypocotyl elongation in seedlings to optimize their overall fitness. Variations in cell growth-associated genes are regulated by several transcription factors. However, the specific transcription factors through which the plant clock increases plant fitness are still being elucidated. In this study, we identified the no apical meristem, Arabidopsis thaliana-activating factor (ATAF-1/2), and cup-shaped cotyledon (NAC) family transcription factor ATAF1 as a novel repressor of hypocotyl elongation under a short-day (SD) photoperiod. Variations in day length profoundly affected the transcriptional and protein levels of ATAF1. ATAF1-deficient mutant exhibited increased hypocotyl length and cell growth-promoting gene expression under SD conditions. Moreover, ATAF1 directly targeted and repressed the expression of the cycling Dof factor 1/5 (CDF1/5), two key transcription factors involved in hypocotyl elongation under SD conditions. Additionally, ATAF1 interacted with and negatively modulated the effects of phytochrome-interacting factor (PIF), thus inhibiting PIF-promoted gene expression and hypocotyl elongation. Taken together, our results revealed ATAF1-PIF as a crucial pair modulating the expression of key transcription factors to facilitate plant growth during day/night cycles under fluctuating light conditions.

4.
Nanomaterials (Basel) ; 14(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38607106

RESUMEN

Semiconductor lasers, characterized by their high efficiency, small size, low weight, rich wavelength options, and direct electrical drive, have found widespread application in many fields, including military defense, medical aesthetics, industrial processing, and aerospace. The mode characteristics of lasers directly affect their output performance, including output power, beam quality, and spectral linewidth. Therefore, semiconductor lasers with high output power and beam quality are at the forefront of international research in semiconductor laser science. The novel parity-time (PT) symmetry mode-control method provides the ability to selectively modulate longitudinal modes to improve the spectral characteristics of lasers. Recently, it has gathered much attention for transverse modulation, enabling the output of fundamental transverse modes and improving the beam quality of lasers. This study begins with the basic principles of PT symmetry and provides a detailed introduction to the technical solutions and recent developments in single-mode semiconductor lasers based on PT symmetry. We categorize the different modulation methods, analyze their structures, and highlight their performance characteristics. Finally, this paper summarizes the research progress in PT-symmetric lasers and provides prospects for future development.

5.
Sensors (Basel) ; 24(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38475153

RESUMEN

LiDAR has high accuracy and resolution and is widely used in various fields. In particular, phase-modulated continuous-wave (PhMCW) LiDAR has merits such as low power, high precision, and no need for laser frequency modulation. However, with decreasing signal-to-noise ratio (SNR), the noise on the signal waveform becomes so severe that the current methods to extract the time-of-flight are no longer feasible. In this paper, a novel method that uses deep neural networks to measure the pulse width is proposed. The effects of distance resolution and SNR on the performance are explored. Recognition accuracy reaches 81.4% at a 0.1 m distance resolution and the SNR is as low as 2. We simulate a scene that contains a vehicle, a tree, a house, and a background located up to 6 m away. The reconstructed point cloud has good fidelity, the object contours are clear, and the features are restored. More precisely, the three distances are 4.73 cm, 6.00 cm, and 7.19 cm, respectively, showing that the performance of the proposed method is excellent. To the best of our knowledge, this is the first work that employs a neural network to directly process LiDAR signals and to extract their time-of-flight.

6.
Diagnostics (Basel) ; 14(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38472954

RESUMEN

Traditional positioning verification using cone-beam computed tomography (CBCT) may incur errors due to potential misalignments between the isocenter of CBCT and the treatment beams in radiotherapy. This study introduces an innovative method for verifying patient positioning in radiotherapy. Initially, the transmission images from an electronic portal imaging device (EPID) are acquired from 10 distinct angles. Utilizing the ART-TV algorithm, a sparse reconstruction of local megavoltage computed tomography (MVCT) is performed. Subsequently, this MVCT is aligned with the planning CT via a three-dimensional mutual information registration technique, pinpointing any patient-positioning discrepancies and facilitating corrective adjustments to the treatment setup. Notably, this approach employs the same radiation source as used in treatment to obtain three-dimensional images, thereby circumventing errors stemming from misalignment between the isocenter of CBCT and the accelerator. The registration process requires only 10 EPID images, and the dose absorbed during this process is included in the total dose calculation. The results show that our method's reconstructed MVCT images fulfill the requirements for registration, and the registration algorithm accurately detects positioning errors, thus allowing for adjustments in the patient's treatment position and precise calculation of the absorbed dose.

7.
Cell Death Dis ; 15(3): 220, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493165

RESUMEN

Pancreatic cancer is one of the most malignant tumor types and is characterized by high metastasis ability and a low survival rate. As a chromatin-binding protein, HMGA2 is widely overexpressed and considered an oncogene with various undefined regulatory mechanisms. Herein, we demonstrated that HMGA2 is highly expressed in pancreatic cancer tissues, mainly distributed in epithelial cells, and represents a subtype of high epithelial-mesenchymal transition. Deletion of HMGA2 inhibits tumor malignancy through cell proliferation, metastasis, and xenograft tumor growth in vivo. Moreover, HMGA2 enhanced the cellular redox status by inhibiting reactive oxygen species and promoting glutathione production. Importantly, ferroptotic cell death was significantly ameliorated in cells overexpressing HMGA2. Conversely, HMGA2 deletion exacerbated ferroptosis. Mechanistically, HMGA2 activated GPX4 expression through transcriptional and translational regulation. HMGA2 binds and promotes cis-element modification in the promoter region of the GPX4 gene by enhancing enhancer activity through increased H3K4 methylation and H3K27 acetylation. Furthermore, HMGA2 stimulated GPX4 protein synthesis via the mTORC1-4EBP1 and -S6K signaling axes. The overexpression of HMGA2 alleviated the decrease in GPX4 protein levels resulting from the pharmacologic inhibition of mTORC1. Conversely, compared with the control, HMGA2 deletion more strongly reduced the phosphorylation of 4EBP1 and S6K. A strong positive correlation between HMGA2 and GPX4 expression was confirmed using immunohistochemical staining. We also demonstrated that HMGA2 mitigated the sensitivity of cancer cells to combination treatment with a ferroptosis inducer and mTORC1 inhibition or gemcitabine. In summary, our results revealed a regulatory mechanism by which HMGA2 coordinates GPX4 expression and underscores the potential value of targeting HMGA2 in cancer treatment.


Asunto(s)
Ferroptosis , Neoplasias Pancreáticas , Humanos , Línea Celular Tumoral , Ferroptosis/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Neoplasias Pancreáticas/genética , Diana Mecanicista del Complejo 1 de la Rapamicina
8.
Sci Rep ; 14(1): 6866, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38514755

RESUMEN

Myocardial infarction (MI) induces neuroinflammation indirectly, chronic neuroinflammation may cause neurodegenerative diseases. Changes in the proteomics of heart and brain tissue after MI may shed new light on the mechanisms involved in neuroinflammation. This study explored brain and heart protein changes after MI with a data-independent acquisition (DIA) mode proteomics approach. Permanent ligation of the left anterior descending coronary artery (LAD) was performed in the heart of rats, and the immunofluorescence of microglia in the brain cortex was performed at 1d, 3d, 5d, and 7d after MI to detect the neuroinflammation. Then proteomics was accomplished to obtain the vital proteins in the heart and brain post-MI. The results show that the number of microglia was significantly increased in the Model-1d group, the Model-3d group, the Model-5d group, and the Model-7d group compared to the Sham group. Various proteins were obtained through DIA proteomics. Linking to key targets of brain disease, 14 proteins were obtained in the brain cortex. Among them, elongation of very long chain fatty acids protein 5 (ELOVL5) and ATP-binding cassette subfamily G member 4 (ABCG4) were verified through western blotting (WB). The results of WB were consistent with the proteomics results. Therefore, these proteins may be related to the pathogenesis of neuroinflammation after MI.


Asunto(s)
Ventrículos Cardíacos , Infarto del Miocardio , Ratas , Animales , Ventrículos Cardíacos/patología , Enfermedades Neuroinflamatorias , Proteómica , Infarto del Miocardio/patología , Corazón
9.
Sci Total Environ ; 920: 171066, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38373454

RESUMEN

The significance of water culture in addressing water crises and ensuring water security has garnered considerable attention, emerging as a focal point in global change and water science research. Water culture is a societal adaptation to changes in hydrological systems. However, this needs to be acknowledged within contemporary discourse on water security governance. This study utilized historical policy document data from many sources, including local municipal records from Shaanxi and Gansu, and water conservancy records. It aimed to identify the significant nodes and stages of policy transformation in the Weihe River Basin (WRB) during the last century (1949-2020). This study employed a content analysis method to elucidate the evolutionary patterns of water culture in the study region during the previous century. Drawing on the co-evolution framework, our investigation delved into the reciprocal relationship between changes in water culture and the evolution of water security in the WRB. Our findings indicated that water culture transformation in the WRB has undergone four significant stages: the Disaster-Resistant Hydraulic (1949-1966), Irrigation Hydraulic (1967-1998), Resources Hydraulic (1999-2010), and Ecological Hydraulic (2011-2020) phases. Water security assessment showed that policy attention varied across the different stages. The disaster-resistant hydraulic phase primarily addressed water-related disaster concerns, whereas the irrigation hydraulic phase emphasized the scarcity of water resources. The resource hydraulic phase focused on ensuring the security of the water environment, while the ecological hydraulic phase placed emphasis on safeguarding water sustainability. Moreover, we found that prevailing water policies prioritize resolving isolated issues; however, water security is a multifaceted systemic matter that requires a comprehensive approach. This study has the potential to offer policy makers a more comprehensive and systematic perspective, enabling them to enhance their understanding of the underlying nature of the problems. Additionally, this study can assist in developing future water security policies.

10.
Sci Total Environ ; 919: 170385, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38364585

RESUMEN

Microbial lipids have attracted considerable interest owing to their favorable environmental sustainability benefits. In laboratory-scale studies, the factors impacting lipid production in oleaginous yeasts, including culture conditions, nutrients, and low-cost substrates, have been extensively studied. However, there were several different modes of microbial lipid cultivation (batch culture, fed-batch culture, continuous culture, and other novel culture modes), making it difficult to comprehensively analyze impacting factors under different cultivation modes on a laboratory scale. And only few cases of microbial lipid production have been conducted at the pilot scale, which requires more technological reliability assessments and environmental benefit evaluations. Thus, this study summarized the different culture modes and cases of scale-up processes, highlighting the role of the nutrient element ratio in regulating culture mode selection and lipid accumulation. The cost distribution and environmental benefits of microbial lipid production by oleaginous yeasts were also investigated. Our results suggested that the continuous culture mode was recommended for the scale-up process because of its stable lipid accumulation. More importantly, exploring the continuous culture mode integrated with other efficient culture modes remained to be further investigated. In research on scale-up processes, low-cost substrate (organic waste) application and optimization of reactor operational parameters were key to increasing environmental benefits and reducing costs.


Asunto(s)
Lípidos , Levaduras , Reproducibilidad de los Resultados , Biocombustibles
11.
Int J Biol Macromol ; 263(Pt 2): 130473, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423437

RESUMEN

Momordica Charantia Polysaccharide (MCP) is a key bioactive compound derived from bitter melon fruit. This review summarizes the advancements in MCP research, including extraction techniques, biological activities, and mechanisms. MCP can be extracted using various methods, and has demonstrated hypoglycemic, antioxidant, anti-inflammatory, and immunoregulatory effects. Research suggests that MCP may regulate metabolic enzymes, oxidative stress reactions, and inflammatory pathways. The review highlights the potential applications of MCP in areas such as anti-diabetes, antioxidant, anti-inflammatory, and immunoregulatory research. Future research should focus on elucidating the molecular mechanisms of MCP and optimizing extraction methods. This review provides a foundation for further research and utilization of MCP.


Asunto(s)
Antioxidantes , Momordica charantia , Antioxidantes/farmacología , Extractos Vegetales/farmacología , Polisacáridos/farmacología , Antiinflamatorios
12.
Opt Lett ; 49(2): 306-309, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38194554

RESUMEN

A novel, to the best of our knowledge, structure for spectral beam combining (SBC) is proposed, utilizing a polarization-separated feedback (PSF). A polarization separation element is introduced to separate the laser beam into a TE-polarized light and a TM-polarized light. The lower-power light is selected as the external feedback to adjust the resonant wavelength, while the other light is combined spectrally. Compared to the conventional SBC source with a similar feedback, the power and efficiency of the PSFSBC are improved by approximately 20%. Additionally, the beam quality in the non-SBC direction is optimized by 10%, and the power on the output coupler is reduced to nearly one-third. This provides an effective method for achieving an optimized SBC performance.

13.
Biosens Bioelectron ; 247: 115921, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38104390

RESUMEN

The oncometabolite D-2-hydroxyglutarate (D-2-HG) has emerged as a valuable biomarker in tumors with isocitrate dehydrogenase (IDH) mutations. Efficient detection methods are required and rapid intraoperative determination of D-2-HG remains a huge challenge. Herein, D-2-HG dehydrogenase from Achromobacter xylosoxidans (AX-D2HGDH) was found to have high substrate specificity. AX-D2HGDH dehydrogenizes D-2-HG and reduces flavin adenine dinucleotide (FAD) bound to the enzyme. Interestingly, the dye resazurin can be taken as another substrate to restore FAD. AX-D2HGDH thus catalyzes a bisubstrate and biproduct reaction: the dehydrogenation of D-2-HG to 2-ketoglutarate and simultaneous reduction of non-fluorescent resazurin to highly fluorescent resorufin. According to steady-state analysis, a ping-pong bi-bi mechanism has been concluded. The Km values for resazurin and D-2-HG were determined as 0.56 µM and 10.93 µM, respectively, suggesting high affinity to both substrates. On the basis, taking AX-D2HGDH and resazurin as recognition and fluorescence transducing element, a D-2-HG biosensor (HGAXR) has been constructed. HGAXR exhibits high sensitivity, accuracy and specificity for D-2-HG in different biological samples. With the aid of HGAXR and the matched low-cost palm-size detecting device, D-2-HG levels in frozen sections of resected brain tumor tissues can be measured in a direct, simple and accurate manner with a fast detection (1-3 min). As the technique of frozen section is familiar to surgeons and pathologists, HGAXR and the portable device can be easily integrated into the current workflow, having potential to provide rapid intraoperative pathology for IDH mutation status and guide decision-making during surgery.


Asunto(s)
Técnicas Biosensibles , Isocitrato Deshidrogenasa , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Secciones por Congelación , Flavina-Adenina Dinucleótido , Mutación
14.
Nanomaterials (Basel) ; 13(24)2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38133054

RESUMEN

On-chip optical modulators, which are capable of converting electrical signals into optical signals, constitute the foundational components of photonic devices. Photonics modulators exhibiting high modulation efficiency and low insertion loss are highly sought after in numerous critical applications, such as optical phase steering, optical coherent imaging, and optical computing. This paper introduces a novel accumulation-type vertical modulator structure based on a silicon photonics platform. By incorporating a high-K dielectric layer of ZrO2, we have observed an increase in modulation efficiency while maintaining relatively low levels of modulation loss. Through meticulous study and optimization, the simulation results of the final device structure demonstrate a modulation efficiency of 0.16 V·cm, with a mere efficiency-loss product of 8.24 dB·V.

15.
Mol Neurobiol ; 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37948003

RESUMEN

Neuroinflammation caused by microglia in the central nervous system (CNS) is observed after myocardial infarction (MI). However, the inflammatory response mechanism remains unclear. BuChang Naoxintong capsule (NXT) is a Chinese medicine for treating ischemic cardio-cerebrovascular diseases, requiring more studies to understand the pharmacodynamic mechanism. Permanent ligation of the left anterior descending coronary artery (LAD) was performed in rats. Additionally, histopathological staining in the left ventricular (LV) and immunofluorescence within the brain cortex after 1 d and 7 d of MI were performed to determine the NXT pharmacodynamic action and best administration dosage. Proteomics helped obtain the essential proteins related to neuroinflammation and MI in the heart and brain tissue after 7 d of MI. Based on TTC, HE, Masson, and immunofluorescence staining results of CD206 and IBA-1, NXT demonstrated a better pharmacodynamic action towards myocardial injury and neuroinflammation after 7 d of MI. Moreover, the human equivalent dosage of NXT (220 mg/kg) became the best administration dose. The proteome bioinformatics analysis in the LV and brain cortex was performed. Thus, the elongation of very long-chain fatty acids protein 5 (ELOVL5) and ATP-binding cassette subfamily G member 4 (ABCG4) became critical proteins related to MI and neuroinflammation. The western blotting results indicated that ABCG4 expression possessed the same trend as the proteomics results. The auto-dock results revealed that ABCG4 had a good binding ability with Ferulic acid, Paeoniflorin, and Tanshinone II A, the key ingredients of NXT. The cellular thermal shift assay results demonstrated that ABCG4 showed better thermal stability post-NXT treatment. NXT can improve myocardial injury, such as heart infarct size, pathological injury, myocardial fibrosis, and inflammatory cell infiltration. Additionally, brain neuroinflammation induced by microglia after MI affects the expression and structure of ABCG4. Thus, ABCG4 could be the key protein associated with MI and neuroinflammation.

16.
Environ Monit Assess ; 195(12): 1519, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37993760

RESUMEN

Populus euphratica and Tamarix chinensis play a vital role in windbreak and sand fixation, maintaining species diversity and ensuring community stability. Managing and protecting the P. euphratica and T. chinensis forests in the Heihe River's lower reaches is an urgent issue to maintain the desert region's ecological balance. In this study, based on the distribution points of P. euphratica and T. chinensis species and environmental data, MaxEnt and random forest (RF) models were used to characterize the potential distribution areas of P. euphratica and T. chinensis in the lower reaches of the Heihe River. The results showed that the accuracy of the RF model was much higher than that of the MaxEnt model. Both the RF and MaxEnt models showed that the distance to the river greatly influenced the distribution of P. euphratica and T. chinensis. Furthermore, the RF model predicted significantly larger highly suitable areas for both P. euphratica and T. chinensis than the MaxEnt model. Our study enhances the understanding of the species' spatial distribution, offering valuable insights for practical management and conservation strategies.


Asunto(s)
Populus , Tamaricaceae , Ríos , Bosques Aleatorios , Monitoreo del Ambiente , China
17.
Biomed Pharmacother ; 168: 115726, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37862973

RESUMEN

Momordica charantia polysaccharide (MCP) is a potential drug for the prevention and alleviation of diabetes mellitus (DM) and diabetic retinopathy (DR). This study aimed to investigate the potential protective effects of MCP on early-stage DR and explore the underlying mechanisms. The model group (DM group) and treatment group (D+H group) were established by inducing type 1 DM using a single dose of streptozotocin (STZ) at 60 mg/kg. After modeling, the D+H group was orally administered a 500 mg/kg dose of MCP solution once daily for 12 weeks. Monitoring of systemic indicators (FBG, body weight, general condition) and retinal tissue inflammation and apoptosis (HE staining, IL-6, MCP-1, TNF-α, VEGF, NF-κB, Caspase-3) in this study demonstrated that MCP intervention alleviated both DM and DR. MCP improved the body weight and general condition of DM rats by reducing FBG levels. It also enhanced the anti-inflammatory and anti-apoptotic capabilities of retinal neurons and microvessels by modulating the actions of cytokines, thereby further regulating the inflammation and apoptosis of retinal neurons and microvessels. The underlying mechanisms may be associated with the downregulation of NF-κB and Caspase-3 pathway protein expression, as well as the downregulation of mRNA expression of NF-κB and Caspase-3 pathway genes. Further research is needed to elucidate the potential mechanisms underlying the protective effects of MCP on DR. MCP may emerge as a selective medication for the prevention and alleviation of DM and a novel natural medicine for the prevention and alleviation of DR.


Asunto(s)
Diabetes Mellitus Tipo 1 , Retinopatía Diabética , Momordica charantia , Ratas , Animales , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/prevención & control , Retinopatía Diabética/genética , FN-kappa B/uso terapéutico , Caspasa 3 , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Peso Corporal
18.
Sensors (Basel) ; 23(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37687780

RESUMEN

The 1550 nm band semiconductor optical amplifier (SOA) has great potential for applications such as optical communication. Its wide-gain bandwidth is helpful in expanding the bandwidth resources of optical communication, thereby increasing total capacity transmitted over the fiber. Its relatively low cost and ease of integration also make it a high-performance amplifier of choice for LiDAR applications. In recent years, with the rapid development of quantum-well (QW) material systems, SOAs have gradually overcome the shortcomings of polarization sensitivity and high noise. The research on quantum-dot (QD) materials has further improved the noise characteristics and transmission loss of SOAs. The design of special waveguide structures-such as plate-coupled optical waveguide amplifiers and tapered amplifiers-has also increased the saturation output power of SOAs. The maximum gain of the SOA has been reported to be more than 21 dB. The maximum saturation output power has been reported to be more than 34.7 dBm. The maximum 3 dB gain bandwidth has been reported to be more than 120 nm, the lowest noise figure has been reported to be less than 4 dB, and the lowest polarization-dependent gain has been reported to be 0.1 dB. This study focuses on the improvement and enhancement of the main performance parameters of high-power SOAs in the 1550 nm band and introduces the performance parameters, the research progress of high-power SOAs in the 1550 nm band, and the development and application status of SOAs. Finally, the development trends and prospects of high-power SOAs in the 1550 nm band are summarized.

19.
Virulence ; 14(1): 2258057, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37743649

RESUMEN

Host innate immunity plays a pivotal role in the early detection and neutralization of invading pathogens. Here, we show that pseudokinase mixed lineage kinase-like protein (MLKL) is required for host defence against Streptococcus pluranimalium infection by enhancing NLRP3 inflammasome activation and extracellular trap formation. Notably, Mlkl deficiency leads to increased mortality, increased bacterial colonization, severe destruction of organ architecture, and elevated inflammatory cell infiltration in murine models of S. pluranimalium pulmonary and systemic infection. In vivo and in vitro data provided evidence that potassium efflux-dependent NLRP3 inflammasome signalling downstream of active MLKL confers host protection against S. pluranimalium infection and initiates bacterial killing and clearance. Moreover, Mlkl deficiency results in defects in extracellular trap-mediated bactericidal activity. In summary, this study revealed that MLKL mediates the host defence response to S. pluranimalium, and suggests that MLKL is a potential drug target for preventing and controlling pathogen infection.


Asunto(s)
Trampas Extracelulares , Inflamasomas , Infecciones Estreptocócicas , Animales , Ratones , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Quinasas/genética , Infecciones Estreptocócicas/genética , Infecciones Estreptocócicas/metabolismo
20.
Environ Sci Technol ; 57(46): 17940-17949, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37624988

RESUMEN

The utilization of steel slag for CO2 sequestration is an effective way to reduce carbon emissions. The reactivity of steel slag in CO2 sequestration depends mainly on material and process parameters. However, there are many puzzles in regard to practical applications due to the different evaluations of process parameters and the lack of investigation of material parameters. In this study, 318 samples were collected to investigate the interactive influence of 12 factors on the carbonation reactivity of steel slag by machine learning with SHapley Additive exPlanations (SHAP). Multilayer perceptron (MLP), random forest, and support vector regression models were built to predict the slurry-phase CO2 sequestration of steel slag. The MLP model performed well in terms of prediction ability and generalization with comprehensive interpretability. The SHAP results showed that the impact of the process parameters was greater than that of the material parameters. Interestingly, the iron ore phase of steel slag was revealed to have a positive effect on steel slag carbonation by SHAP analysis. Combined with previous literature, the carbonation mechanism of steel slag was proposed. Quantitative analysis based on SHAP indicated that steel slag had good carbonation reactivity when the mass fractions of "CaO + MgO", "SiO2 + Al2O3", "Fe2O3", and "MnO" varied from 50-55%, 10-15%, 30-35%, and <5%, respectively.


Asunto(s)
Dióxido de Carbono , Residuos Industriales , Residuos Industriales/análisis , Dióxido de Carbono/análisis , Acero , Dióxido de Silicio , Carbonatos , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...