Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 7(4): 3713-3721, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35128279

RESUMEN

Machine learning and deep learning have facilitated various successful studies of molecular property predictions. The rapid development of natural language processing and graph neural network (GNN) further pushed the state-of-the-art prediction performance of molecular property to a new level. A geometric graph could describe a molecular structure with atoms as the nodes and bonds as the edges. Therefore, a graph neural network may be trained to better represent a molecular structure. The existing GNNs assumed homogeneous types of atoms and bonds, which may miss important information between different types of atoms or bonds. This study represented a molecule using a heterogeneous graph neural network (MolHGT), in which there were different types of nodes and different types of edges. A transformer reading function of virtual nodes was proposed to aggregate all the nodes, and a molecule graph may be represented from the hidden states of the virtual nodes. This proof-of-principle study demonstrated that the proposed MolHGT network improved the existing studies of molecular property predictions. The source code and the training/validation/test splitting details are available at https://github.com/zhangruochi/Mol-HGT.

2.
J Cheminform ; 13(1): 87, 2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34774103

RESUMEN

Scaffold hopping is a central task of modern medicinal chemistry for rational drug design, which aims to design molecules of novel scaffolds sharing similar target biological activities toward known hit molecules. Traditionally, scaffolding hopping depends on searching databases of available compounds that can't exploit vast chemical space. In this study, we have re-formulated this task as a supervised molecule-to-molecule translation to generate hopped molecules novel in 2D structure but similar in 3D structure, as inspired by the fact that candidate compounds bind with their targets through 3D conformations. To efficiently train the model, we curated over 50 thousand pairs of molecules with increased bioactivity, similar 3D structure, but different 2D structure from public bioactivity database, which spanned 40 kinases commonly investigated by medicinal chemists. Moreover, we have designed a multimodal molecular transformer architecture by integrating molecular 3D conformer through a spatial graph neural network and protein sequence information through Transformer. The trained DeepHop model was shown able to generate around 70% molecules having improved bioactivity together with high 3D similarity but low 2D scaffold similarity to the template molecules. This ratio was 1.9 times higher than other state-of-the-art deep learning methods and rule- and virtual screening-based methods. Furthermore, we demonstrated that the model could generalize to new target proteins through fine-tuning with a small set of active compounds. Case studies have also shown the advantages and usefulness of DeepHop in practical scaffold hopping scenarios.

4.
J Chem Inf Model ; 61(6): 2697-2705, 2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34009965

RESUMEN

Determining the properties of chemical molecules is essential for screening candidates similar to a specific drug. These candidate molecules are further evaluated for their target binding affinities, side effects, target missing probabilities, etc. Conventional machine learning algorithms demonstrated satisfying prediction accuracies of molecular properties. A molecule cannot be directly loaded into a machine learning model, and a set of engineered features needs to be designed and calculated from a molecule. Such hand-crafted features rely heavily on the experiences of the investigating researchers. The concept of graph neural networks (GNNs) was recently introduced to describe the chemical molecules. The features may be automatically and objectively extracted from the molecules through various types of GNNs, e.g., GCN (graph convolution network), GGNN (gated graph neural network), DMPNN (directed message passing neural network), etc. However, the training of a stable GNN model requires a huge number of training samples and a large amount of computing power, compared with the conventional machine learning strategies. This study proposed the integrated framework XGraphBoost to extract the features using a GNN and build an accurate prediction model of molecular properties using the classifier XGBoost. The proposed framework XGraphBoost fully inherits the merits of the GNN-based automatic molecular feature extraction and XGBoost-based accurate prediction performance. Both classification and regression problems were evaluated using the framework XGraphBoost. The experimental results strongly suggest that XGraphBoost may facilitate the efficient and accurate predictions of various molecular properties. The source code is freely available to academic users at https://github.com/chenxiaowei-vincent/XGraphBoost.git.


Asunto(s)
Aprendizaje Automático , Redes Neurales de la Computación , Algoritmos , Programas Informáticos
5.
J Chem Inf Model ; 61(1): 21-25, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33170690

RESUMEN

A machine learning enhanced spectrum recognition system called spectrum recognition based on computer vision (SRCV) for data extraction from previously analyzed 13C and 1H NMR spectra has been developed. The intelligent system was designed with four function modules to extract data from three areas of NMR images, including 13C and 1H chemical shifts, the integral, and the range of the shift values. During this study, three machine learning models were pretrained for number recognition, which is the key procedure for NMR data extraction. The k nearest neighbor (kNN) method was selected with optimized k (k = 4), which displayed a 100% recognition rate. Subsequently, the performance of SRCV was tested and validated to have high accuracy with a short processing time (11-21 s) for each NMR spectral image. Our spectrum recognizer enables high-throughput 13C and 1H NMR data extraction from abundant spectra in the literature and has the potential to be used for spectral database construction. In addition, the system may be applicable to be developed for data import to computer-assisted structure elucidation systems, which would automate this procedure significantly. SRCV can be accessed in GitHub (https://github.com/WJmodels/SRCV).


Asunto(s)
Computadores , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA