Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.085
Filtrar
1.
Sci Total Environ ; 946: 174463, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964385

RESUMEN

The increasingly urgent issue of climate change is driving the development of carbon dioxide (CO2) capture and separation technologies in flue gas after combustion. The monolithic adsorbent stands out in practical adsorption applications for its simplified powder compaction process while maintaining the inherent balance between energy consumption for regeneration and selectivity for adsorption. However, optimizing the adsorption capacity and selectivity of CO2 separation materials remains a significant challenge. Herein, we synthesized monolithic polymer networks (N-CMPs) with triphenylamine adsorption sites, acid-base environment tolerance, and precise narrow microchannel pore systems for the selective sieving of CO2 and particulate matter (PM) in flue gas. The inherent continuous covalent bonding of N-CMPs, along with their highly delocalized π-π conjugated porous framework, ensures the stability of the monolithic polymer network's adsorption and separation capabilities under wet and acid-base conditions. Specifically, under the conditions of 1 bar at 273 K, the CO2 adsorption capacity of N-CMP-1 is 3.35 mmol/g. Attributed to the highly polar environment generated by triphenylamine and the inherent high micropore/mesopore ratio, N-CMPs exhibit an excellent ideal adsorbed solution theory (IAST) selectivity for CO2/N2 under simulated flue gas conditions (CO2/N2 = 15:85). Dynamic breakthrough experiments further visualize the high separation efficiency of N-CMPs in practical adsorption applications. Moreover, under acid-base conditions, N-CMPs achieve a capture efficiency exceeding 99.76 % for PM0.3, enabling the selective separation of CO2 and PM in flue gas. In fact, the combined capture of hazardous PM and CO2 from the exhaust gases produced by the combustion of fossil fuels will play a pivotal role in mitigating climate change and environmental issues until low-carbon and alternative energy technologies are widely adopted.

2.
Am J Gastroenterol ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38976522

RESUMEN

BACKGROUND AIMS: Clinically significant post-endoscopic retrograde cholangiopancreatography (ERCP) bleeding (CSPEB) is common. Contemporary estimates of risk are lacking. We aimed to identify risk factors for and outcomes following CSPEB. METHODS: We analyzed multi-center prospective ERCP data between 2018-2023 with 30-day follow-up. The primary outcome was CSPEB, defined as hematemesis, melena, or hematochezia resulting in: hemoglobin drop ≥20 g/L or transfusion and/or endoscopy to evaluate suspected bleeding, and/or unplanned healthcare visitation and/or prolongation of existing admission. Firth logistic regression was employed. P-values <0.05 were significant, with odds ratios (ORs) and 95% confidence intervals reported. RESULTS: CSPEB occurred following 129 (1.5%) of 8,517 ERCPs (mean onset 3.2 days), with 110 of 4,849 events (2.3%) occurring following higher-risk interventions (sphincterotomy, sphincteroplasty, pre-cut sphincterotomy, and/or needle-knife access). CSPEB patients required endoscopy and transfusion in 86.0% and 53.5% of cases, respectively, with three cases (2.3%) being fatal. P2Y12 inhibitors were held for a median of 4 days (IQR 4) prior to higher-risk ERCP. Following higher-risk interventions, P2Y12 inhibitors (OR 3.33, 1.26-7.74), warfarin (OR 8.54, 3.32-19.81), dabigatran (OR 13.40, 2.06-59.96), rivaroxaban (OR 7.42, 3.43-15.24) and apixaban (OR 4.16, 1.99-8.20) were associated with CSPEB. Significant intraprocedural bleeding post sphincterotomy (OR 2.32, 1.06-4.60), but not post sphincteroplasty, was also associated. Concomitant cardiorespiratory events occurred more frequently within 30 days following CSPEB (OR 12.71, 4.75-32.54). CONCLUSIONS: Risks of antiplatelet-related CSPEB may be underestimated by endoscopists based on observations of suboptimal holding before higher-risk ERCP. Appropriate periprocedural antithrombotic management is essential and could represent novel quality initiative targets.

3.
J Hazard Mater ; 476: 135132, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-39002483

RESUMEN

The widespread presence of microplastics (MPs) in aquatic environments has become a significant concern, with freshwater sediments acting as terminal sinks, rapidly picking up these emerging anthropogenic particles. However, the accumulation, transport, degradation and biochemical impacts of MPs in freshwater sediments remain unresolved issues compared to other environmental compartments. Therefore, this paper systematically revealed the spatial distribution and characterization information of MPs in freshwater (rivers, lakes, and estuaries) sediments, in which small-size (<1 mm), fibers, transparent, polyethylene (PE), and polypropylene (PP) predominate, and the average abundance of MPs in river sediments displayed significant heterogeneity compared to other matrices. Next, the transport kinetics and drivers of MPs in sediments are summarized, MPs transport is controlled by the particle diversity and surrounding environmental variability, leading to different migration behaviors and transport efficiencies. Also emphasized the spatio-temporal evolution of MPs degradation processes and biodegradation mechanisms in sediments, different microorganisms can depolymerize high molecular weight polymers into low molecular weight biodegradation by-products via secreting hydrolytic enzymes or redox enzymes. Finally, discussed the ecological impacts of MPs on microbial-nutrient coupling in sediments, MPs can interfere with the ecological balance of microbially mediated nutrient cycling by altering community networks and structures, enzyme activities, and nutrient-related functional gene expressions. This work aims to elucidate the plasticity characteristics, fate processes, and potential ecological impact mechanisms of MPs in freshwater sediments, facilitating a better understanding of environmental risks of MPs in freshwater sediments.

4.
Orthop Surg ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961670

RESUMEN

OBJECTIVE: Currently, there is no established guideline on whether to opt for percutaneous endoscopic lumbar discectomy (PELD) or traditional transforaminal lumbar interbody fusion (TLIF) surgery based on specific types of lumbar disc herniation (LDH). Based on the Michigan State University (MSU) classification system, this study conducted a medium- to long-term follow-up analysis of two surgical methods over 5 years for the first time, aiming to provide empirical evidence to assist in making more informed decisions before surgery for LDH treatment. METHODS: This was a retrospective study that included 273 patients with single-level LDH who underwent PELD or TLIF treatment at our hospital between January 1, 2016, and December 31, 2018. Detailed metrics included preoperative and postoperative visual analogue scale (VAS) scores and Oswestry disability index (ODI) at 1-day, 1-week, 1-year, and 5-year follow-ups. Complications, recurrences, and 5-year postoperative modified MacNab criteria scores were also recorded. Statistical methods included independent sample t-tests, repeated measures analysis of variance (ANOVA), and χ2 tests. RESULTS: Classified into seven groups according to the MSU classification, it was found that there was an improvement in the VAS and ODI scores at four postoperative follow-ups (p < 0.001). PELD showed better results than TLIF in reducing pain and improving the ODI scores in the classifications of 3B, 2B, and 2C (p < 0.05). TLIF demonstrated consistent superiority over PELD in 2A, 2AB, 3A, and 3AB classifications (p < 0.05). The total recurrence rate in the PELD group (11.05%) within 5 years after surgery was higher (p < 0.05) than that in the TLIF group (3.96%). These were mainly concentrated in the 2A, 2AB, 3A, and 3AB types. Moreover, the rate of excellent and good outcomes in the PELD was higher than in the TLIF but no significant difference (χ2 = 1.0568, p = 0.5895). CONCLUSION: This study suggests that PELD and TLIF may relieve LDH, but have advantages under different MSU classifications. The MSU classification has specific guiding significance and could aid in the surgical selection of PELD or TLIF to achieve optimal treatment outcomes for patients with lumbar disc herniation.

5.
Complement Ther Med ; : 103068, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39004289

RESUMEN

BACKGROUND: The utilization of Tuina as a therapeutic intervention for the management of chronic pain has experienced a gradually increase in its popularity, and the purpose of this bibliometric analysis is to offer a comprehensive understanding of the current state and frontier trends, as well as to provide recommendations for future research directions. METHODS: Publications on Tuina for chronic pain published between 2004 and 2023 were retrieved from the Web of Science Core Collection (WoSCC). Microsoft Excel, CiteSpace, VOSViewer, and the R package "bibliometrix" were used to quantitatively analyse the annual publication volume, countries/regions, journals, institutions, cited references, authors, and keywords. RESULTS: A total of 287 publications were retrieved. The number of annual publications on the use of Tuina for treating chronic pain has gradually increased. Most publications were published in China and the United States. Notably, the most productive institution and author were identified as Shanghai University of Traditional Chinese Medicine and Min Fang, respectively. Medicine ranked first as the most influential affiliate and most productive journal. These publications came from 1,650 authors, among whom Edzard Ernst had the most co-citations. Keyword analysis revealed that the new research frontier was low back pain. CONCLUSION: The utilization of Tuina for the treatment of chronic pain has been gaining increasing recognition. Acupuncture, randomised controlled trials, systematic reviews, etc. were the main research subjects. Furthermore, low back pain is the new research frontier. This study provides an in-depth perspective on Tuina for chronic pain, which provides valuable reference material for clinicians with insights of therapeutic strategy, educators with valuable topics, and researchers with new research directions.

6.
Plants (Basel) ; 13(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38931074

RESUMEN

The tree peony, a traditional flower in China, has a short and concentrated flowering period, restricting the development of the tree peony industry. To explore the molecular mechanism of tree peony flowering-stage regulation, PoEP1, which regulated the flowering period, was identified and cloned based on the transcriptome and degradome data of the early-flowering mutant Paeonia ostii 'Fengdan' (MU) and Paeonia ostii 'Fengdan' (FD). Through bioinformatics analysis, expression pattern analysis, and transgene function verification, the role of PoEP1 in the regulation of tree peony flowering was explored. The open-reading frame of PoEP1 is 1161 bp, encoding 386 amino acids, containing two conserved domains. PoEP1 was homologous to the EP1 of other species. Subcellular localization results showed that the protein was localized in the cell wall and that PoEP1 expression was highest in the initial decay stage of the tree peony. The overexpression of PoEP1 in transgenic plants advanced and shortened the flowering time, indicating that PoEP1 overexpression promotes flowering and senescence and shorten the flowering time of plants. The results of this study provide a theoretical basis for exploring the role of PoEP1 in the regulation of tree peony flowering.

8.
Food Microbiol ; 122: 104550, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38839218

RESUMEN

Listeria monocytogenes presents significant risk to human health due to its high resistance and capacity to form toxin-producing biofilms that contaminate food. The objective of this study was to assess the inhibitory effect of citronella aldehyde (CIT) on L. monocytogenes and investigate the underlying mechanism of inhibition. The results indicated that the minimum inhibitory concentration (MIC) and Minimum sterilisation concentration (MBC) of CIT against L. monocytogenes was 2 µL/mL. At this concentration, CIT was able to effectively suppress biofilm formation and reduce metabolic activity. Crystalline violet staining and MTT reaction demonstrated that CIT was able to inhibit biofilm formation and reduce bacterial cell activity. Furthermore, the motility assessment assay revealed that CIT inhibited bacterial swarming and swimming. Scanning electron microscopy (SEM) and laser confocal microscopy (LSCM) observations revealed that CIT had a significant detrimental effect on L. monocytogenes cell structure and biofilm integrity. LSCM also observed that nucleic acids of L. monocytogenes were damaged in the CIT-treated group, along with an increase in bacterial extracellular nucleic acid leakage. The proteomic results also confirmed the ability of CIT to affect the expression of proteins related to processes including metabolism, DNA replication and repair, transcription and biofilm formation in L. monocytogenes. Consistent with the proteomics results are ATPase activity and ATP content of L. monocytogenes were significantly reduced following treatment with various concentrations of CIT. Notably, CIT showed good inhibitory activity against L. monocytogenes on cheese via fumigation at 4 °C.This study establishes a foundation for the potential application of CIT in food safety control.


Asunto(s)
Biopelículas , Queso , Listeria monocytogenes , Pruebas de Sensibilidad Microbiana , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/crecimiento & desarrollo , Listeria monocytogenes/fisiología , Queso/microbiología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Antibacterianos/farmacología , Conservación de Alimentos/métodos , Microbiología de Alimentos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Aldehídos/farmacología , Extractos Vegetales/farmacología , Monoterpenos Acíclicos/farmacología
10.
J Trace Elem Med Biol ; 85: 127488, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38905877

RESUMEN

BACKGROUND: Aluminum exerts neurotoxic effects through various mechanisms, mainly manifested as impaired learning and memory function. METHODS: Forty SD rats were divided into 0, 10, 20, and 40 mM maltol aluminum [Al(mal)3] groups. Cell experiments are divided into 0, 100, 200, and 400 µM Al(mal)3 dose group and control, Al(mal)3, Al(mal)3+inhibitor NC, Al(mal)3+miR-665 inhibitor intervention group. Water maze was used to detect the learning and memory function of rats, HE staining was used to observe the morphology and number of neurons in the CA1 area of the rat hippocampus, Flow cytometry was used to detect the apoptosis of PC12 cells, PCR and Western blotting were used to detect the expression of Caspase3, miR-665 and GNB3/PI3K/AKT proteins. The target binding relationship between miR-665 and GNB3 was verified by double luciferase reporter gene experiment. RESULTS: In vivo experimental results showed that with the increase of Al(mal)3 concentration, the escape latency of rats was prolonged, the target quadrant dwell time was shortened, and the number of crossing platform was reduced. Moreover, the arrangement of neurons was loose and the number decreased; the expression of Caspase3 and miR-665 increased, while the expression of GNB3/PI3K/AKT proteins decreased. In vitro experiments, with the increase of Al(mal)3 concentration, apoptosis rate of PC12 cells increased, the expression of Caspase3, miR-665 and GNB3/PI3K/AKT proteins were consistent with rat results. After inhibiting miR-665 in the intervention group experiment, apoptosis rate of PC12 cells in the aluminum exposure group decreased, the expression of Caspase3 and miR-665 decreased, and the expression of GNB3/PI3K/AKT proteins increased. CONCLUSION: MiR-665 plays an important role in aluminum induced neuronal apoptosis by targeting GNB3 and regulating the PI3K/AKT pathway.

11.
BMC Neurol ; 24(1): 170, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783204

RESUMEN

PURPOSE: QT interval prolongation is one of the most common electrocardiographic (ECG) abnormalities in patients with aneurysmal subarachnoid hemorrhage (aSAH). Whether corrected QT interval (QTc) prolongation is associated with perioperative cardiac events and dismal neurological outcome in mid to long-term follow-up in patients after aSAH is insufficiently studied and remains controversial. METHODS: We retrospectively studied the adult (≥ 18 years) patients admitted to our institution between Jan 2018 and Dec 2020 for aSAH who underwent intracranial aneurysm clipping or embolization. The patients were divided into 2 groups (normal and QTc prolongation groups) according to their QTc. To minimize the confounding bias, a propensity score matching (PSM) analysis was performed to compare the neurologic outcomes between patients with normal QTc and QTc prolongation. RESULTS: After screening, 908 patients were finally included. The patients were divided into 2 groups: normal QTc groups (n = 714) and long QTc group (n = 194). Female sex, hypokalemia, posterior circulation aneurysm, and higher Hunt-Hess grade were associated with QTc prolongation. In multiple regression analysis, older age, higher hemoglobin level, posterior circulation aneurysm, and higher Hunt-Hess grade were identified to be associated with worse outcome during 1-year follow-up. Before PSM, patients with QTc prolongation had higher rate of perioperative cardiac arrest or ventricular arrhythmias. After PSM, there was no statistical difference between normal and QTc prolongation groups in perioperative cardiac events. However, patients in the QTc prolongation group still had worse neurologic outcome during 1-year follow-up. CONCLUSIONS: QTc prolongation is associated with worse outcome in patients following SAH, which is independent of perioperative cardiac events.


Asunto(s)
Embolización Terapéutica , Aneurisma Intracraneal , Síndrome de QT Prolongado , Hemorragia Subaracnoidea , Humanos , Masculino , Femenino , Estudios Retrospectivos , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/cirugía , Persona de Mediana Edad , Aneurisma Intracraneal/cirugía , Aneurisma Intracraneal/complicaciones , Síndrome de QT Prolongado/etiología , Embolización Terapéutica/métodos , Embolización Terapéutica/efectos adversos , Adulto , Anciano , Microcirugia/métodos , Microcirugia/efectos adversos , Resultado del Tratamiento , Electrocardiografía/métodos
12.
ArXiv ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38745706

RESUMEN

Background: Stereotactic body radiotherapy (SBRT) is a well-established treatment modality for liver metastases in patients unsuitable for surgery. Both CT and MRI are useful during treatment planning for accurate target delineation and to reduce potential organs-at-risk (OAR) toxicity from radiation. MRI-CT deformable image registration (DIR) is required to propagate the contours defined on high-contrast MRI to CT images. An accurate DIR method could lead to more precisely defined treatment volumes and superior OAR sparing on the treatment plan. Therefore, it is beneficial to develop an accurate MRI-CT DIR for liver SBRT. Purpose: To create a new deep learning model that can estimate the deformation vector field (DVF) for directly registering abdominal MRI-CT images. Methods: The proposed method assumed a diffeomorphic deformation. By using topology-preserved deformation features extracted from the probabilistic diffeomorphic registration model, abdominal motion can be accurately obtained and utilized for DVF estimation. The model integrated Swin transformers, which have demonstrated superior performance in motion tracking, into the convolutional neural network (CNN) for deformation feature extraction. The model was optimized using a cross-modality image similarity loss and a surface matching loss. To compute the image loss, a modality-independent neighborhood descriptor (MIND) was used between the deformed MRI and CT images. The surface matching loss was determined by measuring the distance between the warped coordinates of the surfaces of contoured structures on the MRI and CT images. To evaluate the performance of the model, a retrospective study was carried out on a group of 50 liver cases that underwent rigid registration of MRI and CT scans. The deformed MRI image was assessed against the CT image using the target registration error (TRE), Dice similarity coefficient (DSC), and mean surface distance (MSD) between the deformed contours of the MRI image and manual contours of the CT image. Results: When compared to only rigid registration, DIR with the proposed method resulted in an increase of the mean DSC values of the liver and portal vein from 0.850±0.102 and 0.628±0.129 to 0.903±0.044 and 0.763±0.073, a decrease of the mean MSD of the liver from 7.216±4.513 mm to 3.232±1.483 mm, and a decrease of the TRE from 26.238±2.769 mm to 8.492±1.058 mm. Conclusion: The proposed DIR method based on a diffeomorphic transformer provides an effective and efficient way to generate an accurate DVF from an MRI-CT image pair of the abdomen. It could be utilized in the current treatment planning workflow for liver SBRT.

13.
Med Phys ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38820286

RESUMEN

BACKGROUND: Stereotactic body radiotherapy (SBRT) is a well-established treatment modality for liver metastases in patients unsuitable for surgery. Both CT and MRI are useful during treatment planning for accurate target delineation and to reduce potential organs-at-risk (OAR) toxicity from radiation. MRI-CT deformable image registration (DIR) is required to propagate the contours defined on high-contrast MRI to CT images. An accurate DIR method could lead to more precisely defined treatment volumes and superior OAR sparing on the treatment plan. Therefore, it is beneficial to develop an accurate MRI-CT DIR for liver SBRT. PURPOSE: To create a new deep learning model that can estimate the deformation vector field (DVF) for directly registering abdominal MRI-CT images. METHODS: The proposed method assumed a diffeomorphic deformation. By using topology-preserved deformation features extracted from the probabilistic diffeomorphic registration model, abdominal motion can be accurately obtained and utilized for DVF estimation. The model integrated Swin transformers, which have demonstrated superior performance in motion tracking, into the convolutional neural network (CNN) for deformation feature extraction. The model was optimized using a cross-modality image similarity loss and a surface matching loss. To compute the image loss, a modality-independent neighborhood descriptor (MIND) was used between the deformed MRI and CT images. The surface matching loss was determined by measuring the distance between the warped coordinates of the surfaces of contoured structures on the MRI and CT images. To evaluate the performance of the model, a retrospective study was carried out on a group of 50 liver cases that underwent rigid registration of MRI and CT scans. The deformed MRI image was assessed against the CT image using the target registration error (TRE), Dice similarity coefficient (DSC), and mean surface distance (MSD) between the deformed contours of the MRI image and manual contours of the CT image. RESULTS: When compared to only rigid registration, DIR with the proposed method resulted in an increase of the mean DSC values of the liver and portal vein from 0.850 ± 0.102 and 0.628 ± 0.129 to 0.903 ± 0.044 and 0.763 ± 0.073, a decrease of the mean MSD of the liver from 7.216 ± 4.513 mm to 3.232 ± 1.483 mm, and a decrease of the TRE from 26.238 ± 2.769 mm to 8.492 ± 1.058 mm. CONCLUSION: The proposed DIR method based on a diffeomorphic transformer provides an effective and efficient way to generate an accurate DVF from an MRI-CT image pair of the abdomen. It could be utilized in the current treatment planning workflow for liver SBRT.

14.
Sci Rep ; 14(1): 11166, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750148

RESUMEN

Magnetic Resonance Imaging (MRI) is increasingly being used in treatment planning due to its superior soft tissue contrast, which is useful for tumor and soft tissue delineation compared to computed tomography (CT). However, MRI cannot directly provide mass density or relative stopping power (RSP) maps, which are required for calculating proton radiotherapy doses. Therefore, the integration of artificial intelligence (AI) into MRI-based treatment planning to estimate mass density and RSP directly from MRI has generated significant interest. A deep learning (DL) based framework was developed to establish a voxel-wise correlation between MR images and mass density as well as RSP. To facilitate the study, five tissue substitute phantoms were created, representing different tissues such as skin, muscle, adipose tissue, 45% hydroxyapatite (HA), and spongiosa bone. The composition of these phantoms was based on information from ICRP reports. Additionally, two animal tissue phantoms, simulating pig brain and liver, were prepared for DL training purposes. The phantom study involved the development of two DL models. The first model utilized clinical T1 and T2 MRI scans as input, while the second model incorporated zero echo time (ZTE) MRI scans. In the patient application study, two more DL models were trained: one using T1 and T2 MRI scans as input, and another model incorporating synthetic dual-energy computed tomography (sDECT) images to provide accurate bone tissue information. The DECT empirical model was used as a reference to evaluate the proposed models in both phantom and patient application studies. The DECT empirical model was selected as the reference for evaluating the proposed models in both phantom and patient application studies. In the phantom study, the DL model based on T1, and T2 MRI scans demonstrated higher accuracy in estimating mass density and RSP for skin, muscle, adipose tissue, brain, and liver. The mean absolute percentage errors (MAPE) were 0.42%, 0.14%, 0.19%, 0.78%, and 0.26% for mass density, and 0.30%, 0.11%, 0.16%, 0.61%, and 0.23% for RSP, respectively. The DL model incorporating ZTE MRI further improved the accuracy of mass density and RSP estimation for 45% HA and spongiosa bone, with MAPE values of 0.23% and 0.09% for mass density, and 0.19% and 0.07% for RSP, respectively. These results demonstrate the feasibility of using an MRI-only approach combined with DL methods for mass density and RSP estimation in proton therapy treatment planning. By employing this approach, it is possible to obtain the necessary information for proton radiotherapy directly from MRI scans, eliminating the need for additional imaging modalities.


Asunto(s)
Aprendizaje Profundo , Imagen por Resonancia Magnética , Fantasmas de Imagen , Terapia de Protones , Imagen por Resonancia Magnética/métodos , Terapia de Protones/métodos , Humanos , Animales , Porcinos , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Dosificación Radioterapéutica
15.
Microbiol Res ; 283: 127710, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593581

RESUMEN

Aflatoxin B1 (AFB1), a highly toxic secondary metabolite produced by Aspergillus flavus, poses a severe threat to agricultural production, food safety and human health. The methylation of mRNA m6A has been identified as a regulator of both the growth and AFB1 production of A. flavus. However, its intracellular occurrence and function needs to be elucidated. Here, we identified and characterized a m6A methyltransferase, AflIme4, in A. flavus. The enzyme was localized in the cytoplasm, and knockout of AflIme4 significantly reduced the methylation modification level of mRNA. Compared with the control strains, ΔAflIme4 exhibited diminished growth, conidial formation, mycelial hydrophobicity, sclerotium yield, pathogenicity and increased sensitivity to CR, SDS, NaCl and H2O2. Notably, AFB1 production was markedly inhibited in the A. flavus ΔAflIme4 strain. RNA-Seq coupled with RT-qPCR validation showed that the transcriptional levels of genes involved in the AFB1 biosynthesis pathway including aflA, aflG, aflH, aflK, aflL, aflO, aflS, aflV and aflY were significantly upregulated. Methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR) analysis demonstrated a significant increase in m6A methylation modification levels of these pathway-specific genes, concomitant with a decrease in mRNA stability. These results suggest that AflIme4 attenuates the mRNA stability of genes in AFB1 biosynthesis by enhancing their mRNA m6A methylation modification, leading to impaired AFB1 biosynthesis. Our study identifies a novel m6A methyltransferase AflIme4 and highlights it as a potential target to control A. flavus growth, development and aflatoxin pollution.


Asunto(s)
Aflatoxinas , Aspergillus flavus , Humanos , Aspergillus flavus/genética , Aflatoxina B1/genética , Aflatoxina B1/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Peróxido de Hidrógeno/metabolismo , ARN Mensajero/metabolismo , Aflatoxinas/genética , Aflatoxinas/metabolismo
16.
Shock ; 61(6): 951-960, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38598838

RESUMEN

ABSTRACT: Objectives: Puerarin, the principal active constituent extracted from Pueraria, is believed to confer protection against sepsis-induced lung injury. The study aimed to elucidate the role and mechanism of Mst1/ERS in puerarin-mediated protection against acute lung injury (ALI). Methods: Monolayer vascular endothelial cell permeability was assessed by gauging the paracellular flow of FITC-dextran 40,000 (FD40). ELISA was employed for the quantification of inflammatory cytokines. Identification of target proteins was conducted through western blotting. Histological alterations and apoptosis were scrutinized using hematoxylin-eosin staining and TUNEL staining, respectively. The ultrastructure of the endoplasmic reticulum was observed via transmission electron microscopy. Results: Puerarin significantly protected mice from LPS-induced ALI, reducing lung interstitial width, neutrophil and lymphocyte infiltration, pulmonary interstitial and alveolar edema, and lung apoptosis. Puerarin treatment also markedly attenuated levels of TNF-α and IL-1ß in both alveolar lavage fluid and serum. Furthermore, puerarin significantly attenuated LPS-induced increases in Mst1, GRP78, CHOP, and Caspase12 protein expression and blunted LPS-induced decrease in ZO-1 protein expression in lung tissues. Puerarin obviously reduced endoplasmic reticulum expansion and vesiculation. Similarly, puerarin significantly mitigated the LPS-induced reduction in HUVEC cell viability and ZO-1 expression. Puerarin also attenuated LPS-induced increase in apoptosis, TNF-α and IL-1ß, FD40 flux, and Mst1, GRP78, CHOP, and Caspase12 expression in HUVEC cells. Nevertheless, the inhibitory impact of puerarin on vascular endothelial cell injury, lung injury, and endoplasmic reticulum stress (ERS) was diminished by Mst1 overexpression. Conclusion: These findings demonstrated that the Mst1/ERS signaling pathway played a pivotal role in the development of LPS-induced vascular endothelial cell dysfunction and ALI. Puerarin exhibited the ability to attenuate LPS-induced vascular endothelial cell dysfunction and ALI by inhibiting the Mst1/ERS signaling pathway.


Asunto(s)
Lesión Pulmonar Aguda , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Isoflavonas , Transducción de Señal , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/prevención & control , Isoflavonas/farmacología , Isoflavonas/uso terapéutico , Animales , Ratones , Transducción de Señal/efectos de los fármacos , Masculino , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Factor de Crecimiento de Hepatocito/metabolismo , Lipopolisacáridos/toxicidad , Proteínas Proto-Oncogénicas/metabolismo , Apoptosis/efectos de los fármacos , Ratones Endogámicos C57BL , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos
17.
Sensors (Basel) ; 24(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38544242

RESUMEN

In low-voltage power distribution station areas (DSAs), sensor devices and communication networks are often inadequate. Therefore, the control strategies mainly used for soft open points (SOPs) based on global information in medium-voltage distribution networks are difficult to be directly applied to low-voltage DSAs. This paper proposes a novel control strategy for SOP that only requires collecting the local information of SOP and the load rate of transformers. It aims to address the issues faced of voltage violations at the end of feeders and the load rate imbalance among adjacent DSAs under the current high penetration of renewable energy sources. In this paper, first, a sensor network consisting of sensor devices located at the transformers and each port of the SOP is introduced for information collection. Then, based on the sensitivity relationship between the node voltage and the injected power, considering capacity and voltage safety constraints, the adjustable range of the active power output for each port of the SOP is derived. According to this range, the operating states of the DSAs are categorized into four scenarios. For each scenario, the adjustment amount of SOP output power is determined to achieve comprehensive regulation of terminal voltage and load rate of all DSAs interconnected by SOP. Finally, the effectiveness of the proposed strategy is verified based on a simulation model of three flexible interconnected DSAs established in MATLAB/Simulink.

18.
Funct Integr Genomics ; 24(2): 54, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38467932

RESUMEN

Despite substantial progress in clinical trials of osteoarthritis (OA) gene therapy, the prevalence of OA is still on the rise. MiRNAs have a potential biomarker and therapeutic target for OA. OA cartilage and chondrosarcoma cells were studied to determine the role of miR-29a-3p and PTEN. OA cartilage and human chondrosarcoma cells (SW1353) were obtained. miR-29a-3p and PTEN signature expression was determined by RT-qPCR. The binding relationship between miR-29a-3p and PTEN was investigated by dual-luciferase reporter gene and western blot assay. TUNEL, immunohistochemistry, CCK-8, and flow cytometry were utilized to determine the proliferation and apoptosis of SW1353 cells. This study indicated downregulation of miR-29a-3p expression and upregulation of PTEN expression in human OA primary chondrocytes or OA tissue samples, compared with the normal cartilage cells or tissues. PTEN expression was negatively correlated with miR-29a-3p expression, and miR-29a-3p targeted PTEN mechanistically. miR-29a-3p reduced SW1353 cell activity and proliferation and promoted cell apoptosis. However, the aforementioned effects could be reversed by downregulating PTEN. miR-29a-3p can stimulate chondrocyte proliferation and inhibit apoptosis by inhibiting PTEN expression.


Asunto(s)
Neoplasias Óseas , Condrosarcoma , MicroARNs , Osteoartritis , Humanos , Apoptosis/genética , Proliferación Celular/genética , Condrosarcoma/genética , MicroARNs/genética , MicroARNs/metabolismo , Osteoartritis/genética , Tensinas
19.
Int Immunopharmacol ; 130: 111713, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38387192

RESUMEN

Asthma, a disease intricately linked to immune inflammation, is significantly influenced by the immune regulatory effect of bone mesenchymal stem cells (BMSCs). This study aims to investigate changes in the homing of BMSCs in bronchial asthma, focusing on the Notch homolog (Notch)1/Jagged1 signaling pathway's role in regulating T helper 1(Th1)/T helper 2(Th2) drift. Additionally, we further explore the effects and mechanisms of homologous BMSCs implantation in asthma-related immune inflammation. Following intervention with BMSCs, a significant improvement in the pathology of rats with asthma was observed. Simultaneously, a reduction in the expression of inflammatory cells and inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin(IL)-4, and IL-13 was observed in bronchoalveolar lavage fluid (BALF). Furthermore, there was an increase in the expression of Th1 cytokine Interferon-γ(IFN-γ)and the transcription factor T-box expressed in T cell (T-bet), while the expression of Th2 cytokine IL-13 and transcription factor GATA binding protein (GATA)-3 decreased in lung tissue. This indicates that the Th1/Th2 drift leans towards Th1, which a crucial in ameliorating asthma inflammation. Importantly, inhibition of the Notch1 signaling pathway led to an increased expression of the Stromal cell-derived factor-1(SDF-1)/C-X-C motif chemokine receptor (CXCR)4 chemokine axis. Consequently, the homing ability of bone marrow mesenchymal stem cells to asthma-affected lung tissue was significantly enhanced. BMSCs demonstrated heightened efficacy in regulating the cytokine/chemokine network and Th1/Th2 balance, thereby restoring a stable state during the immune response process in asthma. In conclusion, inhibiting the Notch signaling pathway enhances the expression of the SDF-1 and CXCR4 chemokine axis, facilitating the migration of allogeneic BMSCs to injured lung tissues. This, in turn, promotes immune regulation and improves the Th1/Th2 imbalance, thereby enhancing the therapeutic effect on asthmatic airway inflammation.


Asunto(s)
Asma , Células Madre Mesenquimatosas , Ratas , Animales , Ratones , Interleucina-13/metabolismo , Asma/tratamiento farmacológico , Pulmón/patología , Citocinas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Inflamación/metabolismo , Quimiocinas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Th2 , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C , Receptor Notch1/metabolismo
20.
J Chromatogr A ; 1719: 464774, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38422707

RESUMEN

Ginseng is beneficial in the prevention of many diseases and provides benefits for proper growth and development owing to the presence of various useful bioactive substances of diverse chemical heterogeneity (e.g., triterpenoid saponins, polysaccharides, volatile oils, and amino acids). As a result, understanding the therapeutic advantages of ginseng requires an in-depth compositional evaluation employing a simple and rapid analytical technique. In this work, three types of surface-activated carbon fibers (ACFs) were prepared by gas-phase oxidation, strong acid treatment, and Plasma treatment to obtain CO2-ACFs, acidified-ACFs, and plasma-ACFs, respectively. Three prepared ACFs were compared in terms of their physicochemical characterization (i.e., surface roughness and functional groups). A separation system was built using a column with modified ACFs, followed by mass spectrometry detection to investigate and determine substances of different polarities. Among the three columns, CO2-ACFs showed the optimum separation effect. 13 strong polar compounds (12 amino acids and1 oligosaccharide) and 15 lesser polar compounds (ginsenosides) were separated and identified successfully within 4 min in the ginseng sample. The data obtained by CO2-ACFs-TOF-MS/MS and UHPLC-TOF-MS/MS were compared. Our approach was found to be faster (4 min vs. 36 min) and greener, requiring much less solvent (1 mL vs. 10.8 mL), and power (0.06 vs. 0.6 kWh). The developed methodology can provide a faster, eco-friendly, and more reliable tool for the high-throughput screening of complex natural matrices and the simultaneous evaluation of several compounds in diverse samples.


Asunto(s)
Ginsenósidos , Panax , Ginsenósidos/análisis , Espectrometría de Masas en Tándem/métodos , Carbón Orgánico , Fibra de Carbono , Dióxido de Carbono/análisis , Extractos Vegetales/química , Aminoácidos , Panax/química , Cromatografía Líquida de Alta Presión/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...