Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Res ; 82(22): 4164-4178, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36084256

RESUMEN

Exercise prevents cancer incidence and recurrence, yet the underlying mechanism behind this relationship remains mostly unknown. Here we report that exercise induces the metabolic reprogramming of internal organs that increases nutrient demand and protects against metastatic colonization by limiting nutrient availability to the tumor, generating an exercise-induced metabolic shield. Proteomic and ex vivo metabolic capacity analyses of murine internal organs revealed that exercise induces catabolic processes, glucose uptake, mitochondrial activity, and GLUT expression. Proteomic analysis of routinely active human subject plasma demonstrated increased carbohydrate utilization following exercise. Epidemiologic data from a 20-year prospective study of a large human cohort of initially cancer-free participants revealed that exercise prior to cancer initiation had a modest impact on cancer incidence in low metastatic stages but significantly reduced the likelihood of highly metastatic cancer. In three models of melanoma in mice, exercise prior to cancer injection significantly protected against metastases in distant organs. The protective effects of exercise were dependent on mTOR activity, and inhibition of the mTOR pathway with rapamycin treatment ex vivo reversed the exercise-induced metabolic shield. Under limited glucose conditions, active stroma consumed significantly more glucose at the expense of the tumor. Collectively, these data suggest a clash between the metabolic plasticity of cancer and exercise-induced metabolic reprogramming of the stroma, raising an opportunity to block metastasis by challenging the metabolic needs of the tumor. SIGNIFICANCE: Exercise protects against cancer progression and metastasis by inducing a high nutrient demand in internal organs, indicating that reducing nutrient availability to tumor cells represents a potential strategy to prevent metastasis. See related commentary by Zerhouni and Piskounova, p. 4124.


Asunto(s)
Ejercicio Físico , Melanoma , Nutrientes , Proteómica , Animales , Humanos , Ratones , Glucosa/metabolismo , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Estudios Prospectivos , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Ejercicio Físico/fisiología , Nutrientes/genética , Nutrientes/metabolismo
2.
Front Physiol ; 13: 916924, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774290

RESUMEN

Purpose: Compare recovery rates between active young (Y) and middle-aged (MA) males up to 48H post aerobically based, exercise-induced muscle damage (EIMD) protocol. A secondary aim was to explore the relationships between changes in indices associated with EIMD and recovery throughout this timeframe. Methods: Twenty-eight Y (n = 14, 26.1 ± 2.9y, 74.5 ± 9.3 kg) and MA (n = 14, 43.6 ± 4.1y, 77.3 ± 12.9 kg) physically active males, completed a 60-min downhill running (DHR) on a treadmill at -10% incline and at 65% of maximal heart rate (HR). Biochemical, biomechanical, psychological, force production and muscle integrity (using MRI diffusion tensor imaging) markers were measured at baseline, immediately-post, and up to 48H post DHR. Results: During the DHR, HR was lower (p < 0.05) in MA compared to Y, but running pace and distance covered were comparable between groups. No statistical or meaningful differences were observed between groups for any of the outcomes. Yet, Significant (p < 0.05) time-effects within each group were observed: markers of muscle damage, cadence and perception of pain increased, while TNF-a, isometric and dynamic force production and stride-length decreased. Creatine-kinase at 24H-post and 48H-post were correlated (p < 0.05, r range = -0.57 to 0.55) with pain perception, stride-length, and cadence at 24H-post and 48H-post. Significant (p < 0.05) correlations were observed between isometric force production at all time-points and IL-6 at 48H-post DHR (r range = -0.62 to (-0.74). Conclusion: Y and MA active male amateur athletes recover in a comparable manner following an EIMD downhill protocol. These results indicate that similar recovery strategies can be used by trainees from both age groups following an aerobic-based EIMD protocol.

3.
Cancers (Basel) ; 14(12)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35740619

RESUMEN

Angiogenesis is an important control point of gastric cancer (GC) progression and metastasis. Angiopoietin-2 (ANG2) is a key driver of tumor angiogenesis and metastasis, and it has been identified in primary GC tissues. Extracellular vesicles (EVs) play an important role in mediating intercellular communication through the transfer of proteins between cells. However, the expression of ANG2 in GC-EVs has never been reported. Here, we characterized the EV-mediated crosstalk between GC and endothelial cells (ECs), with particular focus on the role of ANG2. We first demonstrate that ANG2 is expressed in GC primary and metastatic tissues. We then isolated EVs from two different GC cell lines and showed that these EVs enhance EC proliferation, migration, invasion, and tube formation in vitro and in vivo. Using an angiogenesis protein array, we showed that GC-EVs contain high levels of proangiogenic proteins, including ANG2. Lastly, using Lenti viral ANG2-shRNA, we demonstrated that the proangiogenic effects of the GC-EVs were mediated by ANG2 through the activation of the PI3K/Akt signal transduction pathway. Our data suggest a new mechanism via which GC cells induce angiogenesis. This knowledge may be utilized to develop new therapies in gastric cancer.

4.
Oncogene ; 40(10): 1792-1805, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33564068

RESUMEN

Cutaneous melanoma tumors are heterogeneous and show diverse responses to treatment. Identification of robust molecular biomarkers for classifying melanoma tumors into clinically distinct and homogenous subtypes is crucial for improving the diagnosis and treatment of the disease. In this study, we present a classification of melanoma tumors into four subtypes with different survival profiles based on three distinct gene expression signatures: keratin, immune, and melanogenesis. The melanogenesis expression pattern includes several genes that are characteristic of the melanosome organelle and correlates with worse survival, suggesting the involvement of melanosomes in melanoma aggression. We experimentally validated the secretion of melanosomes into surrounding tissues by melanoma tumors, which potentially affects the lethality of metastasis. We propose a simple molecular decision tree classifier for predicting a tumor's subtype based on representative genes from the three identified signatures. Key predictor genes were experimentally validated on melanoma samples taken from patients with varying survival outcomes. Our three-pattern approach for classifying melanoma tumors can contribute to advancing the understanding of melanoma variability and promote accurate diagnosis, prognostication, and treatment.


Asunto(s)
Inmunidad/genética , Melaninas/genética , Melanoma/genética , Proteínas de Neoplasias/genética , Carcinogénesis/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Calicreínas/genética , Masculino , Melaninas/biosíntesis , Melanoma/clasificación , Melanoma/patología , Melanosomas/genética , Melanosomas/patología , Proteínas Musculares/genética , Metástasis de la Neoplasia/genética , RNA-Seq , Receptores Inmunológicos/genética , Análisis de Supervivencia , Transcriptoma/genética , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/genética
5.
Isr Med Assoc J ; 22(6): 374-377, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32558444

RESUMEN

BACKGROUND: The effect of weight reduction following bariatric surgery is already well known. OBJECTIVES: To investigate the effects of abdominoplasty on metabolic markers indicative of weight loss. METHODS: The authors prospectively enrolled consecutive obese patients after laparoscopic sleeve gastrectomy. They were candidates for post-bariatric surgery abdominoplasty. The authors measured metabolic markers one day prior to surgery, 24 hours after, and 3 months following surgery. They recorded medical and demographic parameters. RESULTS: Sixteen patients were recruited for participation in the study. Mean age was 47 years and 88% of the patients were female. Bariatric surgery achieved a mean decline in body mass index of 13.8 kg/m2. All patients underwent abdominoplasty. Leptin and insulin levels were slightly increased at 3 months postoperative. No significant changes were observed in glucose, hemoglobin, or triglycerides throughout the study. CONCLUSIONS: In a cohort of obese patients undergoing laparoscopic sleeve gastrectomy followed by abdominoplasty, no significant changes were noted in a patient's metabolic profiles. The results suggest that abdominoplasty has no effect on the metabolic markers tested in contrast to other reports; however, the cosmetic, behavioral, and psychological advantages of abdominoplasty are well established.


Asunto(s)
Abdominoplastia , Cirugía Bariátrica , Gastrectomía , Insulina/metabolismo , Leptina/metabolismo , Obesidad/cirugía , Pérdida de Peso , Adulto , Cirugía Bariátrica/métodos , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad
6.
Sci Signal ; 12(591)2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31337739

RESUMEN

Transforming growth factor-ß (TGF-ß) superfamily members are critical signals in tissue homeostasis and pathogenesis. Melanoma grows in the epidermis and invades the dermis before metastasizing. This disease progression is accompanied by increased sensitivity to microenvironmental TGF-ß. Here, we found that skin fat cells (adipocytes) promoted metastatic initiation by sensitizing melanoma cells to TGF-ß. Analysis of melanoma clinical samples revealed that adipocytes, usually located in the deeper hypodermis layer, were present in the upper dermis layer within proximity to in situ melanoma cells, an observation that correlated with disease aggressiveness. In a coculture system, adipocytes secreted the cytokines IL-6 and TNF-α, which induced a proliferative-to-invasive phenotypic switch in melanoma cells by repressing the expression of the microRNA miR-211. In a xenograft model, miR-211 exhibited a dual role in melanoma progression, promoting cell proliferation while inhibiting metastatic spread. Bioinformatics and molecular analyses indicated that miR-211 directly targeted and repressed the translation of TGFBR1 mRNA, which encodes the type I TGF-ß receptor. Hence, through this axis of cytokine-mediated repression of miR-211, adipocytes increased the abundance of the TGF-ß receptor in melanoma cells, thereby enhancing cellular responsiveness to TGF-ß ligands. The induction of TGF-ß signaling, in turn, resulted in a proliferative-to-invasive phenotypic switch in cultured melanoma cells. Pharmacological inhibition of TGF-ß prevented these effects. Our findings further reveal a molecular link between fat cells and metastatic progression in melanoma that might be therapeutically targeted in patients.


Asunto(s)
Adipocitos/citología , Regulación Neoplásica de la Expresión Génica , Melanoma/metabolismo , MicroARNs/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Adipocitos/metabolismo , Animales , Proliferación Celular , Técnicas de Cocultivo , Progresión de la Enfermedad , Humanos , Interleucina-6/metabolismo , Ligandos , Ratones , Células 3T3 NIH , Metástasis de la Neoplasia , Trasplante de Neoplasias , Fenotipo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...