Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ther Adv Respir Dis ; 14: 1753466620962665, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33357114

RESUMEN

BACKGROUND AND AIMS: Expansion and morphological dysregulation of the bronchial vascular network occurs in asthmatic airways. Interleukin (IL) -17 and Rho-kinase (ROCK) are known to act in inflammation control and remodeling. Modulation of Rho-kinase proteins and IL-17 may be a promising approach for the treatment of asthma through the control of angiogenesis. Our objective was to analyze the effects of treatment with anti-IL17 and/or Rho-kinase inhibitor on vascular changes in mice with chronic allergic pulmonary inflammation. METHODS: Sixty-four BALB/c mice, with pulmonary inflammation induced by ovalbumin were treated with anti-IL17A (7.5/µg per dose, intraperitoneal) and/or Rho-kinase inhibitor (Y-27632-10 mg/kg, intranasal), 1 h before each ovalbumin challenge (22, 24, 26, and 28/days). Control animals were made to inhale saline. At the end of the protocol, lungs were removed, and morphometric analysis was performed to quantify vascular inflammatory, remodeling, and oxidative stress responses. RESULTS: Anti-IL17 or Rho-kinase inhibitor reduced the number of CD4+, CD8+, dendritic cells, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17, Rho-kinase 1 and 2, transforming growth factor (TGF-ß), vascular endothelial growth factor (VEGF), nuclear factor (NF)-KappaB, iNOS, metalloproteinase (MMP)-9, MMP-12, metalloproteinase inhibitor-1 (TIMP-1), FOXP-3, signal transducer and activator of transcription 1 (STAT1) and phospho-STAT1-positive cells, and actin, endothelin-1, isoprostane, biglycan, decorin, fibronectin and the collagen fibers volume fraction compared with the ovalbumin group (p < 0.05). The combination treatment, when compared with anti-IL17, resulted in potentiation of decrease in the number of IL1ß- and dendritic cells-positive cells. When we compared the OVA-RHO inhibitor-anti-IL17 with OVA-RHO inhibitor we found a reduction in the number of CD8+ and IL-17, TGF-ß, and phospho-STAT1-positive cells and endothelin-1 in the vessels (p < 0.05). There was an attenuation in the number of ROCK 2-positive cells in the group with the combined treatment when compared with anti-IL17 or Rho-kinase inhibitor-treated groups (p < 0.05). CONCLUSION: We observed no difference in angiogenesis after treatment with Rho-kinase inhibitor and anti-IL17. Although the treatments did not show differences in angiogenesis, they showed differences in the markers involved in the angiogenesis process contributing to inflammation control and vascular remodeling.The reviews of this paper are available via the supplemental material section.


Asunto(s)
Asma/fisiopatología , Inhibidores Enzimáticos/farmacología , Interleucina-17/antagonistas & inhibidores , Neumonía/fisiopatología , Remodelación Vascular/efectos de los fármacos , Quinasas Asociadas a rho/antagonistas & inhibidores , Amidas/farmacología , Animales , Biomarcadores/metabolismo , Citocinas/metabolismo , Isoprostanos/metabolismo , Ratones Endogámicos BALB C , Óxido Nítrico Sintasa/metabolismo , Piridinas/farmacología , Remodelación Vascular/fisiología , Quinasas Asociadas a rho/metabolismo
3.
Sci Rep ; 9(1): 12624, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31477763

RESUMEN

To evaluate whether a recombinant serine protease inhibitor (rBmTI-A) modulates inflammation in an experimental model of chronic allergic lung inflammation. Balb/c mice were divided into four groups: SAL (saline), OVA (sensitized with ovalbumin), SAL + rBmTI-A (control treated with rBmTI-A) and OVA + rBmTI-A (sensitized with ovalbumin and treated with rBmTI-A). The animals received an intraperitoneal injection of saline or ovalbumin, according to the group. The groups received inhalation with saline or ovalbumin and were treated with rBmTI-A or saline by nasal instillation. After 29 days, we evaluated the respiratory mechanics; bronchoalveolar lavage fluid (BALF); cytokines; MMP-9, TIMP-1; eosinophils; collagen and elastic fibre expression in the airways; and the trypsin-like, MMP-1, and MMP-9 lung tissue proteolytic activity. Treatment with rBmTI-A reduced the trypsin-like proteolytic activity, the elastance and resistance maximum response, the polymorphonuclear cells, IL-5, IL-10, IL-13 and IL-17A in the BALF, the expression of IL-5, IL-13, IL-17, CD4+, MMP-9, TIMP-1, eosinophils, collagen and elastic fibres in the airways of the OVA + rBmTI-A group compared to the OVA group (p < 0.05). rBmTI-A attenuated bronchial hyperresponsiveness, inflammation and remodelling in this experimental model of chronic allergic pulmonary inflammation. This inhibitor may serve as a potential therapeutic tool for asthma treatment.


Asunto(s)
Hipersensibilidad/complicaciones , Hipersensibilidad/tratamiento farmacológico , Neumonía/complicaciones , Neumonía/tratamiento farmacológico , Proteínas Recombinantes/uso terapéutico , Inhibidores de Serina Proteinasa/uso terapéutico , Animales , Biomarcadores/metabolismo , Líquido del Lavado Bronquioalveolar , Enfermedad Crónica , Modelos Animales de Enfermedad , Eosinófilos/efectos de los fármacos , Matriz Extracelular/metabolismo , Hipersensibilidad/fisiopatología , Pulmón/patología , Pulmón/fisiopatología , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos BALB C , Neumonía/fisiopatología , Proteolisis , Proteínas Recombinantes/farmacología , Mecánica Respiratoria/efectos de los fármacos
4.
Front Physiol ; 9: 1183, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30233389

RESUMEN

Background: Interleukin-17 (IL-17) and Rho-kinase (ROCK) play an important role in regulating the expression of inflammatory mediators, immune cell recruitment, hyper-responsiveness, tissue remodeling, and oxidative stress. Modulation of IL-17 and ROCK proteins may represent a promising approach for the treatment of this disease. Objective: To study the effects of an anti-IL17 neutralizing antibody and ROCK inhibitor treatments, separately and in combination, in a murine model of chronic allergy-induced lung inflammation. Methods: Sixty-four BALBc mice, were divided into eight groups (n = 8): SAL (saline-instilled); OVA (exposed-ovalbumin); SAL-RHOi (saline and ROCK inhibitor), OVA-RHOi (exposed-ovalbumin and ROCK inhibitor); SAL-anti-IL17 (saline and anti-IL17); OVA-anti-IL17 (exposed-ovalbumin and anti-IL17); SAL-RHOi-anti-IL17 (saline, ROCK inhibitor and anti-IL17); and OVA-RHOi-anti-IL17 (exposed-ovalbumin, anti-IL17, and ROCK inhibitor). A 28-day protocol of albumin treatment was used for sensitization and induction of pulmonary inflammation. The anti-IL17A neutralizing antibody (7.5 µg per treatment) was administered by intraperitoneal injection and ROCK inhibitor (Y-27632) intranasally (10 mg/kg), 1 h prior to each ovalbumin challenge (days 22, 24, 26, and 28). Results: Treatment with the anti-IL17 neutralizing antibody and ROCK inhibitor attenuated the percentage of maximal increase of respiratory system resistance and respiratory system elastance after challenge with methacholine and the inflammatory response markers evaluated (CD4+, CD8+, ROCK1, ROCK2, IL-4, IL-5, IL-6, IL-10 IL-13, IL-17, TNF-α, TGF-ß, NF-κB, dendritic cells, iNOS, MMP-9, MMP-12, TIMP-1, FOXP3, isoprostane, biglycan, decorin, fibronectin, collagen fibers content and gene expression of IL-17, VAChT, and arginase) compared to the OVA group (p < 0.05). Treatment with anti-IL17 and the ROCK inhibitor together resulted in potentiation in decreasing the percentage of resistance increase after challenge with methacholine, decreased the number of IL-5 positive cells in the airway, and reduced, IL-5, TGF-ß, FOXP3, ROCK1 and ROCK2 positive cells in the alveolar septa compared to the OVA-RHOi and OVA-anti-IL17 groups (p < 0.05). Conclusion: Anti-IL17 treatment alone or in conjunction with the ROCK inhibitor, modulates airway responsiveness, inflammation, tissue remodeling, and oxidative stress in mice with chronic allergic lung inflammation.

5.
Biomed Res Int ; 2017: 8287125, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28466019

RESUMEN

Background. Proteinases play a key role in emphysema. Bauhinia bauhinioides cruzipain inhibitor (BbCI) is a serine-cysteine proteinase inhibitor. We evaluated BbCI treatment in elastase-induced pulmonary alterations. Methods. C57BL/6 mice received intratracheal elastase (ELA group) or saline (SAL group). One group of mice was treated with BbCI (days 1, 15, and 21 after elastase instillation, ELABC group). Controls received saline and BbCI (SALBC group). After 28 days, we evaluated respiratory mechanics, exhaled nitric oxide, and bronchoalveolar lavage fluid. In lung tissue we measured airspace enlargement, quantified neutrophils, TNFα-, MMP-9-, MMP-12-, TIMP-1-, iNOS-, and eNOS-positive cells, 8-iso-PGF2α, collagen, and elastic fibers in alveolar septa and airways. MUC-5-positive cells were quantified only in airways. Results. BbCI reduced elastase-induced changes in pulmonary mechanics, airspace enlargement and elastase-induced increases in total cells, and neutrophils in BALF. BbCI reduced macrophages and neutrophils positive cells in alveolar septa and neutrophils and TNFα-positive cells in airways. BbCI attenuated elastic and collagen fibers, MMP-9- and MMP-12-positive cells, and isoprostane and iNOS-positive cells in alveolar septa and airways. BbCI reduced MUC5ac-positive cells in airways. Conclusions. BbCI improved lung mechanics and reduced lung inflammation and airspace enlargement and increased oxidative stress levels induced by elastase. BbCI may have therapeutic potential in chronic obstructive pulmonary disease.


Asunto(s)
Cisteína Endopeptidasas/administración & dosificación , Proteínas de Plantas/administración & dosificación , Neumonía/tratamiento farmacológico , Enfisema Pulmonar/tratamiento farmacológico , Animales , Líquido del Lavado Bronquioalveolar , Humanos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Ratones , Estrés Oxidativo/efectos de los fármacos , Elastasa Pancreática/toxicidad , Neumonía/inducido químicamente , Neumonía/patología , Proteínas Protozoarias , Enfisema Pulmonar/inducido químicamente , Enfisema Pulmonar/patología
6.
BMC Pulm Med ; 13: 52, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23947680

RESUMEN

BACKGROUND: The importance of the lung parenchyma in the pathophysiology of asthma has previously been demonstrated. Considering that nitric oxide synthases (NOS) and arginases compete for the same substrate, it is worthwhile to elucidate the effects of complex NOS-arginase dysfunction in the pathophysiology of asthma, particularly, related to distal lung tissue. We evaluated the effects of arginase and iNOS inhibition on distal lung mechanics and oxidative stress pathway activation in a model of chronic pulmonary allergic inflammation in guinea pigs. METHODS: Guinea pigs were exposed to repeated ovalbumin inhalations (twice a week for 4 weeks). The animals received 1400 W (an iNOS-specific inhibitor) for 4 days beginning at the last inhalation. Afterwards, the animals were anesthetized and exsanguinated; then, a slice of the distal lung was evaluated by oscillatory mechanics, and an arginase inhibitor (nor-NOHA) or vehicle was infused in a Krebs solution bath. Tissue resistance (Rt) and elastance (Et) were assessed before and after ovalbumin challenge (0.1%), and lung strips were submitted to histopathological studies. RESULTS: Ovalbumin-exposed animals presented an increase in the maximal Rt and Et responses after antigen challenge (p<0.001), in the number of iNOS positive cells (p<0.001) and in the expression of arginase 2, 8-isoprostane and NF-kB (p<0.001) in distal lung tissue. The 1400 W administration reduced all these responses (p<0.001) in alveolar septa. Ovalbumin-exposed animals that received nor-NOHA had a reduction of Rt, Et after antigen challenge, iNOS positive cells and 8-isoprostane and NF-kB (p<0.001) in lung tissue. The activity of arginase 2 was reduced only in the groups treated with nor-NOHA (p <0.05). There was a reduction of 8-isoprostane expression in OVA-NOR-W compared to OVA-NOR (p<0.001). CONCLUSIONS: In this experimental model, increased arginase content and iNOS-positive cells were associated with the constriction of distal lung parenchyma. This functional alteration may be due to a high expression of 8-isoprostane, which had a procontractile effect. The mechanism involved in this response is likely related to the modulation of NF-kB expression, which contributed to the activation of the arginase and iNOS pathways. The association of both inhibitors potentiated the reduction of 8-isoprostane expression in this animal model.


Asunto(s)
Arginasa/antagonistas & inhibidores , Hipersensibilidad/fisiopatología , Pulmón/fisiopatología , Estrés Oxidativo/fisiología , Neumonía/fisiopatología , Mecánica Respiratoria/fisiología , Administración por Inhalación , Animales , Arginasa/metabolismo , Enfermedad Crónica , Dinoprost/metabolismo , Modelos Animales de Enfermedad , Cobayas , Hipersensibilidad/metabolismo , Hipersensibilidad/patología , Pulmón/metabolismo , Pulmón/patología , Masculino , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ovalbúmina/efectos adversos , Neumonía/inducido químicamente , Neumonía/metabolismo
7.
Front Pharmacol ; 4: 46, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23616768

RESUMEN

Eosinophils are circulating granulocytes involved in pathogenesis of asthma. A cascade of processes directed by Th2 cytokine producing T-cells influence the recruitment of eosinophils into the lungs. Furthermore, multiple elements including interleukin (IL)-5, IL-13, chemoattractants such as eotaxin, Clara cells, and CC chemokine receptor (CCR)3 are already directly involved in recruiting eosinophils to the lung during allergic inflammation. Once recruited, eosinophils participate in the modulation of immune response, induction of airway hyperresponsiveness and remodeling, characteristic features of asthma. Various types of promising treatments for reducing asthmatic response are related to reduction in eosinophil counts both in human and experimental models of pulmonary allergic inflammation, showing that the recruitment of these cells really plays an important role in the pathophysiology of allergic diseases such asthma.

8.
Respir Physiol Neurobiol ; 185(2): 435-45, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23009745

RESUMEN

UNLABELLED: We evaluated the effects of anti-iNOS (1400W - W) associated with leukotriene antagonist (montelukast - M) or corticosteroid (dexamethasone - D) on distal lung of guinea pigs (GP) with chronic pulmonary inflammation. METHODS: GP were inhaled with ovalbumin (OVA-2×/week/4 weeks), treated with M (OVAM), D (OVAD) and/or W (OVAW, OVADW, OVAMW) and distal lungs were evaluated by morphometry. RESULTS: Isolated treatments were not sufficient to reduce all parameters. In OVADW, all parameters were reduced with greater reduction in elastic fibers, TIMP-1, IL-4, IL-5, IFN-gamma and PGF2-alpha compared with OVAD (p<0.05). OVAMW potentiated the reduction of actin, elastic fibers, TIMP-1, IL-4, IL-5, TGF-beta, IFN-gamma, iNOS, and PGF2-alpha to a greater extent than OVAM (p<0.05). A reduction of TIMP-1, IL-4, IL-5, TGF-beta, IFN-gamma and iNOS was observed in OVADW compared with OVAMW (p<0.05). CONCLUSIONS: Although anti-iNOS paired with montelukast or dexamethasone yields better results than isolated treatments, the most effective pairing for controlling inflammation, oxidative stress and remodeling in this asthma model was found to be corticosteroids and anti-iNOS.


Asunto(s)
Amidinas/uso terapéutico , Antiinflamatorios/uso terapéutico , Bencilaminas/uso terapéutico , Pulmón/patología , Neumonía/tratamiento farmacológico , Neumonía/patología , Acetatos/uso terapéutico , Animales , Enfermedad Crónica , Ciclopropanos , Citocinas/metabolismo , Dexametasona/uso terapéutico , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/uso terapéutico , Eosinófilos/efectos de los fármacos , Eosinófilos/patología , Cobayas , Masculino , Ovalbúmina/toxicidad , Neumonía/inducido químicamente , Quinolinas/uso terapéutico , Estadísticas no Paramétricas , Sulfuros
9.
Neuroimmunomodulation ; 19(3): 158-70, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22262048

RESUMEN

Mechanisms involved in stress-induced asthmatic alterations have been poorly characterised. We assessed whether inducible nitric oxide synthase (iNOS) inhibition modulates the stress-amplified lung parenchyma responsiveness, oxidative stress and extracellular matrix remodelling that was previously increased by chronic lung inflammation. Guinea pigs were subjected to 7 exposures to ovalbumin (1-5 mg/ml) or saline (OVA and SAL groups) over 4 weeks. To induce behavioural stress, animals were subjected to a forced swimming protocol (5 times/week, over 2 weeks; SAL-Stress and OVA-Stress groups) 24 h after the 4th inhalation. 1400W (iNOS-specific inhibitor) was administered intraperitoneally in the last 4 days of the protocol (SAL-1400W, OVA-1400W, SAL-Stress+1400W and OVA-Stress+1400W groups). Seventy-two hours after the last inhalation, animals were anaesthetised and exsanguinated, and adrenal glands were removed. Lung tissue resistance and elastance were evaluated by oscillatory mechanics and submitted for histopathological evaluation. Stressed animals had higher adrenal weights compared to non-stressed groups, which were reduced by 1400W treatment. Behavioural stress in sensitised animals amplified the resistance and elastance responses after antigen challenge, numbers of eosinophils and iNOS+ cells, actin content and 8-iso-PGF2α density in the distal lung compared to the OVA group. 1400W treatment in ovalbumin-exposed and stressed animals reduced lung mechanics, iNOS+ cell numbers and 8-iso-PGF2α density compared to sensitised and stressed animals that received vehicle treatment. We concluded that stress amplifies the distal lung constriction, eosinophilic inflammation, iNOS expression, actin content and oxidative stress previously induced by chronic lung inflammation. iNOS-derived NO contributes to stress-augmented lung tissue functional alterations in this animal model and is at least partially due to activation of the oxidative stress pathway.


Asunto(s)
Óxido Nítrico Sintasa de Tipo II/administración & dosificación , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/fisiología , Estrés Oxidativo , Neumonía/enzimología , Estrés Fisiológico , Actinas/metabolismo , Glándulas Suprarrenales/patología , Animales , Colágeno , Dinoprost/análogos & derivados , Dinoprost/metabolismo , Eosinófilos/patología , Cobayas , Hidrocortisona/sangre , Pulmón/enzimología , Pulmón/inmunología , Pulmón/patología , Masculino , Tamaño de los Órganos , Neumonía/patología , Neumonía/fisiopatología
10.
Neuroimmunomodulation ; 19(1): 1-9, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22067616

RESUMEN

BACKGROUND/AIMS: Epidemiological studies suggest that stress has an impact on asthmatic exacerbations. We evaluated if repeated stress, induced by forced swimming, modulates lung mechanics, distal airway inflammation and extracellular matrix remodeling in guinea pigs with chronic allergic inflammation. METHODS: Guinea pigs were submitted to 7 ovalbumin or saline aerosols (1-5 mg/ml during 4 weeks; OVA and SAL groups). Twenty-four hours after the 4th inhalation, guinea pigs were submitted to the stress protocol 5 times a week during 2 weeks (SAL-S and OVA-S groups). Seventy-two hours after the 7th inhalation, guinea pigs were anesthetized and mechanically ventilated. Resistance and elastance of the respiratory system were obtained at baseline and after ovalbumin challenge. Lungs were removed, and inflammatory and extracellular matrix remodeling of distal airways was assessed by morphometry. Adrenals were removed and weighed. RESULTS: The relative adrenal weight was greater in stressed guinea pigs compared to non-stressed animals (p < 0.001). Repeated stress increased the percent elastance of the respiratory system after antigen challenge and eosinophils and lymphocytes in the OVA-S compared to the OVA group (p < 0.001, p = 0.003 and p < 0.001). Neither collagen nor elastic fiber contents were modified by stress in sensitized animals. CONCLUSIONS: In this animal model, repeated stress amplified bronchoconstriction and inflammatory response in distal airways without interfering with extracellular matrix remodeling.


Asunto(s)
Hipersensibilidad/etiología , Inflamación/complicaciones , Trastornos Respiratorios/complicaciones , Trastornos Respiratorios/patología , Estrés Psicológico/patología , Estrés Psicológico/fisiopatología , Administración por Inhalación , Glándulas Suprarrenales/patología , Análisis de Varianza , Animales , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Cobayas , Inflamación/inducido químicamente , Masculino , Infiltración Neutrófila , Tamaño de los Órganos , Ovalbúmina/efectos adversos , Estimulación Física/efectos adversos , Trastornos Respiratorios/inducido químicamente , Natación/psicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...