Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Physiol ; 597(7): 2045-2061, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30656684

RESUMEN

KEY POINTS: Orosensory thermal trigeminal afferent neurons respond to cool, warm, and nociceptive hot temperatures with the majority activated in the cool range. Many of these thermosensitive trigeminal orosensory afferent neurons also respond to capsaicin, menthol, and/or mustard oil (allyl isothiocyanate) at concentrations found in foods and spices. There is significant but incomplete overlap between afferent trigeminal neurons that respond to oral thermal stimulation and to the above chemesthetic compounds. Capsaicin sensitizes warm trigeminal thermoreceptors and orosensory nociceptors; menthol attenuates cool thermoresponses. ABSTRACT: When consumed with foods, mint, mustard, and chili peppers generate pronounced oral thermosensations. Here we recorded responses in mouse trigeminal ganglion neurons to investigate interactions between thermal sensing and the active ingredients of these plants - menthol, allyl isothiocyanate (AITC), and capsaicin, respectively - at concentrations found in foods and commercial hygiene products. We carried out in vivo confocal calcium imaging of trigeminal ganglia in which neurons express GCaMP3 or GCAMP6s and recorded their responses to oral stimulation with thermal and the above chemesthetic stimuli. In the V3 (oral sensory) region of the ganglion, thermoreceptive neurons accounted for ∼10% of imaged neurons. We categorized them into three distinct classes: cool-responsive and warm-responsive thermosensors, and nociceptors (responsive only to temperatures ≥43-45 °C). Menthol, AITC, and capsaicin also elicited robust calcium responses that differed markedly in their latencies and durations. Most of the neurons that responded to these chemesthetic stimuli were also thermosensitive. Capsaicin and AITC increased the numbers of warm-responding neurons and shifted the nociceptor threshold to lower temperatures. Menthol attenuated the responses in all classes of thermoreceptors. Our data show that while individual neurons may respond to a narrow temperature range (or even bimodally), taken collectively, the population is able to report on graded changes of temperature. Our findings also substantiate an explanation for the thermal sensations experienced when one consumes pungent spices or mint.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Capsaicina/farmacología , Mentol/farmacología , Neuronas/efectos de los fármacos , Aceites de Plantas/farmacología , Sensación Térmica/fisiología , Nervio Trigémino/citología , Animales , Frío , Femenino , Proteínas Fluorescentes Verdes , Calor , Masculino , Ratones , Planta de la Mostaza , Canales de Potencial de Receptor Transitorio/fisiología
2.
Front Neural Circuits ; 11: 37, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28620283

RESUMEN

Auditory streaming enables perception and interpretation of complex acoustic environments that contain competing sound sources. At early stages of central processing, sounds are segregated into separate streams representing attributes that later merge into acoustic objects. Streaming of temporal cues is critical for perceiving vocal communication, such as human speech, but our understanding of circuits that underlie this process is lacking, particularly at subcortical levels. The superior paraolivary nucleus (SPON), a prominent group of inhibitory neurons in the mammalian brainstem, has been implicated in processing temporal information needed for the segmentation of ongoing complex sounds into discrete events. The SPON requires temporally precise and robust excitatory input(s) to convey information about the steep rise in sound amplitude that marks the onset of voiced sound elements. Unfortunately, the sources of excitation to the SPON and the impact of these inputs on the behavior of SPON neurons have yet to be resolved. Using anatomical tract tracing and immunohistochemistry, we identified octopus cells in the contralateral cochlear nucleus (CN) as the primary source of excitatory input to the SPON. Cluster analysis of miniature excitatory events also indicated that the majority of SPON neurons receive one type of excitatory input. Precise octopus cell-driven onset spiking coupled with transient offset spiking make SPON responses well-suited to signal transitions in sound energy contained in vocalizations. Targets of octopus cell projections, including the SPON, are strongly implicated in the processing of temporal sound features, which suggests a common pathway that conveys information critical for perception of complex natural sounds.


Asunto(s)
Núcleo Coclear/citología , Neuronas/fisiología , Complejo Olivar Superior/citología , Complejo Olivar Superior/fisiología , Anestesia General , Animales , Estado de Conciencia/efectos de los fármacos , Estado de Conciencia/fisiología , Neuronas/efectos de los fármacos
3.
Neuroscience ; 337: 315-330, 2016 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-27651152

RESUMEN

The leading treatments for severe hearing disabilities work on the principle of conveying electrical pulses to the auditory brainstem that enable perception of speech. It is currently not known how well the brainstem neurons specialized for decoding such coarse sound information develop when deprived of auditory input activity. Here, we used congenitally deaf α1D-/- mice, lacking activity in the auditory nerve, to investigate the superior paraolivary nucleus (SPON) - a prominent mammalian brainstem structure that responds selectively to sound pulses by rebound spiking. Whole-cell patch-clamp recordings from SPON neurons in the α1D-/- and control mice were obtained at equivalent pre- and post-hearing onset ages. The results show that SPON neurons in the α1D-/- display less precise, plateau-like rebound spiking compared to control neurons. However, the rebound spiking mechanism undergoes strong compensation with age in the α1D-/-. Voltage-activated Ca2+-currents lower the spike threshold, rescuing the capacity for spike initiation at pre-hearing onset ages. Gradual up-regulation of the inwardly rectifying h-current contributes to depolarize the membrane potential. Reduction of the membrane time constant and less recruitment of Ca2+-currents thereby normalize precise rebound spiking at post-hearing onset ages. We found the soluble form of the neurotrophic factor neuritin to be up-regulated in SPON of deaf mice, which may have promoted neuronal survival and prolonged plasticity of the SPON circuitry. A stereotyped timeline of compensation of rebound spiking in deaf SPON neurons indicates robust intrinsic regulation of the brainstem circuitry encoding sound rhythms. This may be a prerequisite for successful cochlear implants.


Asunto(s)
Potenciales de Acción/fisiología , Vías Auditivas/fisiología , Audición/fisiología , Neuronas/fisiología , Núcleo Olivar/fisiología , Estimulación Acústica/métodos , Animales , Vías Auditivas/crecimiento & desarrollo , Percepción Auditiva/fisiología , Ratones , Plasticidad Neuronal , Núcleo Olivar/crecimiento & desarrollo , Tiempo de Reacción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...